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GENERALIZED HOMOGENEOUS DERIVATIONS ON GRADED RINGS

YASSINE AIT MOHAMED

ABsTrACT. We introduce a notion of generalized homogeneous derivations on graded rings as a nat-
ural extension of the homogeneous derivations defined by Kanunnikov. We then define gr-generalized
derivations, which preserve the degrees of homogeneous components. Several significant results orig-
inally established for prime rings are extended to the setting of gr-prime rings, and we characterize
conditions under which gr-semiprime rings contain nontrivial central graded ideals. In addition, we
investigate the algebraic and module-theoretic structures of these maps, establish their functorial prop-
erties, and develop categorical frameworks that describe their derivation structures in both ring and
module contexts.

1. Introduction

Derivations are fundamental mappings in ring theory that capture differential-like behavior while
preserving the underlying algebraic structure. They play a central role in the study of ring-theoretic
properties, especially in characterizing commutativity and detecting structural invariants in algebraic
systems. Since their introduction, derivations have been the subject of numerous generalizations. A
major development was Bresar’s introduction of generalized derivations [5], which opened a rich line of
research (see, for example, [0], [7], [11], [[2]). This broader framework has proved to be remarkably
effective in extending many classical results that were originally established for standard derivations
(k. ], (O], [0, [10]).

In parallel, the theory of graded rings has become a central tool in modern algebra. Graded structures
naturally arise in various mathematical contexts, including group rings, polynomial rings, tensor algebras,
and cohomology theories. They provide refined structural information that supports both classification
and characterization results. The two strands, generalized derivations and graded structures, were par-
tially unified by Kanunnikov in 2018 through the introduction of homogeneous derivations on graded rings
[2]. Homogeneous derivations are classical derivations that, in addition, preserve the grading: they map
homogeneous elements to homogeneous elements and thus simultaneously respect both the differential
and graded structures of the ring.

In our earlier work [1], several classical theorems on derivations were extended to the graded setting.
For instance, we established graded analogues of Posner’s theorem for gr-prime rings of characteristic
different from 2: if the composition of two derivations (with at least one of them homogeneous) is again
a derivation, then one of them must be trivial. We also showed that if a gr-prime ring admits a nonzero
homogeneous derivation that is centralizing on a nonzero graded ideal, then the ring is commutative.
Moreover, we proved a graded version of Herstein’s theorem: in gr-prime rings of characteristic not
equal to 2, if two nonzero homogeneous derivations have Lie bracket contained in the center, then the
ring is commutative. For gr-semiprime rings, we showed that homogeneous derivations satisfying suitable
centralizing conditions guarantee the existence of nonzero central graded ideals. Building on these results,
the present paper introduces generalized homogeneous derivations on graded rings, develops their basic
properties, and studies their behavior in both ring and module contexts. Our goal is to extend the theory
of generalized derivations to the graded setting in a way that preserves the rich graded structure while
revealing new algebraic phenomena.

Let G denote a group with identity element e. A ring R is called G-graded if it can be decomposed
as R = @, R+ into additive subgroups such that R, R., C R; , for all 71,7 € G. The collection
of homogeneous elements H(R) = |J, o R+ consists of elements a € R, having degree dega = T.
Each element x € R has a unique representation x = > x, where z, € R, are the homogeneous
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components. The graded structure naturally extends to tensor products through

(Rok S)y = €P R, @k S,

To="

for G-graded K-algebras and similarly to polynomial rings.

Anideal J C Ris graded when J = @__(JNR;), where we denote J; = JNR;. Ring homomorphisms
¢ : R — S between G-graded rings are graded if ¢(R;) C S;, Hom(R, S)9" denoted the set of all graded
homomorphisms. When J is graded, quotient rings inherit the canonical grading structure (R/J), :=
{F € R/J|r € R;}. A graded ring R is gr-prime if aRb = {0} implies a = 0 or b = 0 for homogeneous
elements a,b € H(R), and gr-semiprime if aRa = {0} implies a = 0 for a € H(R).

A G-graded module over a G-graded ring R decomposes as M = P, ., M, with the compatibility
condition R, - M, C M. Graded homomorphisms satisfy f(M,) C N;, and tensor products exhibit the
multiplicative grading

(M ®gr N)j, = @ M; ®gr No.

To=k

An additive mapping d : R — R is a derivation if it satisfies the Leibniz rule d(zy) = d(z)y + zd(y)
for all x,y € R. A derivation d is homogeneous if d(H(R)) C H(R) ([3]). Inner derivations have the
form d(z) = [a, z] for some fixed a € R, where [a,z] = ax — za denotes the commutator. A generalized
derivation is an additive mapping F : R — R satisfying F(zy) = F(z)y + zd(y) for all z,y € R, where d
is the associated derivation of F'.

Organization of the paper. In §2, we define generalized homogeneous derivations on graded rings,
establish their main properties, and develop a functorial framework. In §3, we introduce gr-generalized
derivations, which preserve degrees of homogeneous components, and study their algebraic and Lie-
theoretic structures. In §4, we study commutativity criteria for gr-prime rings. Section §4.1 examines
conditions under which homogeneous derivations force commutativity via Lie brackets and Jordan prod-
ucts. In §4.2, we extend classical results from prime rings to gr-prime rings under the action of gen-
eralized homogeneous derivations. In §5, we identify when gr-semiprime rings contain nonzero central
graded ideals by means of generalized homogeneous derivations, yielding graded analogues of Posner-type
results. Finally, in §6, we extend the framework to graded modules, introduce generalized homogeneous
derivations on modules, study their functorial behavior, and construct the associated category ///gh.
Conventions. Throughout this paper, we adopt the following conventions.

e All polynomial rings Clty,...,t,] are equipped with the standard Z-grading by total degree,
where deg(t7' -+ ti") = a1 + -+ + an.
e The *+ notation: When a condition involves the symbol £, such as

F(zy)*azy € Z(R) or Fi(z)F(y) zy € Z(R),

we mean that at least one of the two possibilities holds. Note that the case with — can always be
reduced to the case with + by replacing F (or Fy, Fy) by —F (or —F;, —Fb). Thus, the proofs
typically establish the result for one sign and invoke this reduction for the other.

o Abelian grading group: We restrict our attention to abelian grading groups G throughout. This
assumption is essential because, in general, the Lie bracket [z,y] = zy — yz and the Jordan
product z oy = xy + yx do not preserve homogeneity when applied to homogeneous elements,
as illustrated in the following example. The abelian condition guarantees the preservation of
homogeneity, which is essential for the commutator-based techniques used in this paper.

Example 1.1. Let R = My(k) denote the ring of 4 x 4 matrices over a field k, and let D1g = {a,b | a® =
b? = e, bab = a~1) be the dihedral group of order 10. We define a D1g-grading on R by setting

k0 0

o

Re = Ra, = Ra2 =

o O O
o O O
OO OO
oo o FF
o O O
OO OO
OO OO
o o o FF
OO OO

k
0
0

T O O
o O O
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0 00O 0 0 0O 0 0 0 k
0 0 0O 0 0 0 k 0000
Be=1p o000 B =loo0oo0oo]| Fao=|ogo0o0o0
0 0 0O 0 kK 0 O kK 0 0 O

0 00 O 0 0 0O

0 00 O E 0 0 O
R(L4b = 0 0 0 k, I Ra4 = O k, 0 O ) RaQb = Ragb = {0}

0 0 kK O 0 0 0O

One verifies by direct computation that
00 00
00 00
[Rp, Rya] = Ry o Ry = 00 0 k ¢ H(R).
E 0 0 0

2. Generalized homogeneous derivations

We introduce generalized homogeneous derivations on G-graded rings and establish their functorial
properties.

Definition 2.1. Let R be a ring graded by an arbitrary group G. An additive mapping F' : R — R is
called a generalized homogeneous derivation if there exists a homogeneous derivation d : R — R such
that

(i) F(zy) = F(x)y + zd(y) for all x,y € R;

(ii) F(r) € H(R) for allT € H(R).
The mapping d is called an associated homogeneous derivation of F.

We denote such a generalized homogeneous derivation by (F,d)p, where the subscript ‘h’ emphasizes
the homogeneity condition. The collection of all generalized homogeneous derivations of R is denoted by
DecZl(R).

Example 2.1. Let R = M,,(C[t]) with Zs-grading where Ry consists of matrices with polynomial entries
having only even-degree monomials, and Ry consists of matrices with polynomial entries having only odd-
degree monomials. Define d : R — R by d(A) = £(A) (entrywise differentiation) and F : R — R by
F(A)=tA+d(A). Then (F,d)y, is a generalized homogeneous derivation.

We now highlight several key properties of generalized homogeneous derivations that follow directly
from Definition 2.1.

Remark 2.1. Let R be a G-graded ring, and let (Fy,dy)n and (Fa,da)n be generalized homogeneous
deriwations of R. In general, the sum Fy + Fy does not define a generalized homogeneous derivation. For
instance, consider the polynomial ring Clty,to, t3] equipped with the standard Z-grading. Define

9 B}
Fl(f):dl(f):tga—tji and FQ(f):dZ(f):aitfz.
Then their sum acts as o o
(F1+F2)(f):t3877f1+871§27

which does not preserve homogeneity. This example shows that the set @et%h(R) of generalized homoge-
neous derivations does not carry a natural additive structure.

Proposition 2.1. Let R be a nontrivially G-graded ring. Then the following inclusions hold
Detl(R) C Derd)(R) € Gen(R),

where @etg(R) and &en(R) denote the sets of homogeneous derivations and generalized derivations on
R, respectively. Both inclusions are strict.
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Proof. The inclusions follow directly from the definitions. For strictness, consider R = C[ty, t3] with the
standard Z-grading. Define

0 0
F(f)=t.f+ t1t2i and d(f) =tita 5~ f
81&1 a 1
Then (F,d), € @et%h(R). However, F ¢ Detls(R). For the second inclusion, define G(f) = t,f + 3t2
Then G € Gen(R) but G ¢ Derds'(R). O

In the following proposition, we establish several sufficient conditions for the existence of nonzero
generalized homogeneous derivations on a graded ring R.

Proposition 2.2. Let R be a G-graded ring. Then R admits a nonzero generalized homogeneous deriva-
tion if any of the following holds:

) R has a nonzero homogeneous derivation.
2) R, NZ(R) # {0} for some o € G.
3) R admzts a nonzero graded endomorphism.
4) C

r(R.) = R and R. # {0}.

(1
(
(
(

Proof. (1) If d # 0 is a homogeneous derivation, then (d,d); is a nonzero generalized homogeneous
derivation by definition.

(2) For a nonzero a € R, N Z(R), define F,(r) = ar. Since a is central and homogeneous, F, preserves
homogeneous elements, and (Fy, 0);, satisfies the required conditions.

(3) Any nonzero graded endomorphism ¢ : R — R yields (F,0), where F' = ¢, because graded
endomorphisms preserve homogeneous components.

(4) For a nonzero b € R, with Cr(R.) = R, define Fy(r) = br. The centrality condition ensures that
(Fy,0)p, is well defined and nonzero. O

Definition 2.2. Let R be a G-graded ring and (F,d), a generalized homogeneous derivation. A graded
ideal J is gr-differential if d(J) € J and F(J) C 7.

Remark 2.2. Not all graded ideals are gr-differential. For instance, in R[ty,ts] with (F,d), defined
by F(P) = d(P) = g—i, the graded ideal 3 = (t1ts) fails the gr-differential property since d(tita) =
to ¢ J. However, restrictions of generalized homogeneous derivations to gr-differential ideals preserve the

derivation structure.

Proposition 2.3. Let (F,d), be a generalized homogeneous derivation of a G-graded ring R, and let
{35} pen be gr-differential ideals. Then (\gep Ips [1gep Ip, I forn > 1, and -5 5 I are gr-differential
ideals.

Proof. Each operation preserves both the graded ideal property and the invariance conditions d(J) C
and F(J) C 7.

O«

Remark 2.3. Let J be a gr-differential ideal with respect to (F,d)y, in a G-graded ring R. Then (F,d)y,
induces a well-defined generalized homogeneous derivation (ﬁ', CZ);, on the quotient ring R/J via the natural
definitions F() = F(z) and d(Z) = d(z). The gr-differential property ensures independence from coset
representatives, while the derivation structure transfers canonically to the quotient.

Proposition 2.4. Let {R;};cr be a finite collection of G;-graded rings. Then

@etghﬂ (HR) = H@etgz(R

icl el

Proof. Define ® : Derl' (R) — [[;c; Derd (R:) by ®((F,d)n) = ((F1,d1)n, .., (Fn,dn)n) where Fi(r;) =
i (F(e;(r;))) and d;(r;) = mi(d(e;(r;))). Here e; : R; — R and m; : R — R; are the canonical em-
bedding and projection maps. The inverse ¥ is defined by U ((Fy,dy1)n, ..., (Fn,dn)r) = (F,d), where
F(ri,....rn) = (Fi(r1),..., Fu(rp)) and d(ry, ..., ry) = (d1(r1), . . ., dn(ry)). A direct verification shows
Vod =id and o ¥ =id. |
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Proposition 2.5. Let ¢ : R — S be a surjective graded homomorphism with ker ¢ a gr-differential ideal.
Then ¢ induces

b - Derd(R) — Derd(S)
defined by ¢.((Fr,dr)n) = (Fs,ds)n where Fs(¢(r)) = ¢(Fr(r)) and ds(¢(r)) = ¢(dr(r)).
Proof. Well-definedness follows from the gr-differential property of ker(¢). The derivation properties
transfer directly via surjectivity of ¢ and the graded homomorphism properties. O

Proposition 2.6. Let ¢ : R — S be a graded isomorphism. Then

Oy Dl (R) & Dexdf(S),  Pu((Frodr)n) = (poFrogp ', podrop "),
s a bijection.
Proof. Conjugation by isomorphisms preserves derivation structures. The inverse is @;1((Fg,ds) R) =
(p7roFsop,o " odsop)n. O
Corollary 2.1. |©et%h(R)\ is tnvariant under graded automorphisms.

Definition 2.3. Let R and S be G-graded rings. Let (Fr,dg)n and (Fs,ds)n be generalized homogeneous
derivations on R and S, respectively. A graded homomorphism ¢ : R — S is called a ghd-homomorphism
if it satisfies the compatibility conditions ¢ o Fr = Fgo ¢ and ¢ odr = dg o ¢. These conditions ensure
that the following diagrams commute:

dr

R I R R % R
Lo Lo and 19 Lo
s I og s 505

Example 2.2. For graded rings (R,G1) and (S, G2) with generalized homogeneous derivations (Fr,dg)n
and (Fs,dg)n, the canonical projections mg : R X S — R and g : R x S — S are ghd-homomorphisms
with respect to (F,d);, defined by F(r,s) = (Fr(r), Fs(s)) and d(r,s) = (dg(r),ds(s)).

Definition 2.4. The category %g has

(i) Objects: triples (R, F,d) where R is G-graded and (F,d), is a generalized homogeneous derivation.
(ii) Morphisms: ghd-homomorphisms between the underlying rings.

Proposition 2.7. 9% admits finite products.

Proof. Let {(R;, Fi,d;)}icr be a finite family of objects in ¢2. By Proposition 2.4, we know that
R = [];e; Ri can be equipped with a generalized homogeneous derivation (F,d), where F((r;)icr) =
(Fi(r:))ier and d((r;)ier) = (di(r:))ic1, making (R, F,d) an object in ¢%. To verify the universal prop-
erty of products, let (T, Fr,dr) be an arbitrary object in 4% and let {¢; : T — R;}ic; be a family of
morphisms in %g We must demonstrate the existence and uniqueness of a morphism ¢ : T" — R such
that m; 0 ¢ = ¢; for each i € I, where 7; : R — R; denotes the canonical projection. Define ¢ : T'— R by
d(t) = (¢i(t))ier for all t € T. By construction, 7; 0 ¢ = ¢; for each i € I. To verify that ¢ is a morphism
in 9, we confirm its compatibility with the generalized homogeneous derivations: For any ¢t € T

o(Fr(t)) = (¢i(Fr(t)))ier
= (Fi(¢i(t)))ier
= F((¢i(t))ier)
F

Similarly, for the derivation component
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The uniqueness of ¢ follows directly from the universal property of the categorical product. Indeed, if
1 : T — R is another morphism in gg such that 7; o 1) = ¢; for each i € I, then for any t € T

Y(t) = (mi(Y(t)))ier = (¢i(t))ier = ¢(t).
Hence, 1 = ¢. O

3. gr-Generalized derivations

The set Z‘Det%h (R) does not have a natural algebraic structure, since the sum of two generalized homo-
geneous derivations may fail to preserve homogeneity (Remark 2.1). This issue comes from the tension
between the generalized derivation rule and the requirements of graded homogeneity. To overcome this, we
restrict our attention to generalized homogeneous derivations that preserve the degrees of homogeneous
elements.

Definition 3.1. Let R be a ring graded by an arbitrary group G. A generalized homogeneous derivation
(F,d) is called a gr-generalized derivation if

F(R:)C R, and d(R;)C R, foralTegd.
The set of all such derivations is denoted by p@et%h(R).

Example 3.1. Let R = C[t1,ts] be the polynomial ring with the standard Z-grading. Define F(f) =
a(f) = tl% + tg% for all f € R. Then (F,d)y, is a gr-generalized derivation.

The hierarchy of notions considered in this paper is as follows:

gr-generalized derivation =——= generalized homogeneous derivation

ﬂ

generalized derivation

ﬂ

homogeneous derivation derivation

Remark 3.1. Any gr-generalized derivation of R restricts to a generalized derivation on the identity
component R,.

Example 3.2. For R = Ms(k) with Zs-grading where Ry = {diag(a,d) | a,d € k} and Ry = {anti-diag(b, c) |
b,c € k}, the map F = \-idg with d = 0 extends any scalar multiplication on R, = k-I5 to a gr-generalized
derivation.

Conjecture 1. Fvery gr-generalized derivation F, : R, — R, extends to a gr-generalized derivation on
R.

Proposition 3.1. p@et%h(R) forms a Z(R) N Re.-module under pointwise addition and scalar multipli-
cation (r- (F,d)p) = (rF,rd).

Proof. The set p@et%h(R) is an additive group under pointwise addition. For the Z(R) N R.-module
structure, define scalar multiplication by r-(F,d), = (rF,rd), for r € Z(R)NR, and (F,d) € p® etgGh(R).
It is clear that (rF,rd), € p@et%h(R), since the gr-generalized derivation property follows from the

centrality of r. For degree preservation, if z € R., then F(z),d(z) € R;. As r € R., we have (rF)(z) =
r(F(z)) € ReR; = R,, and similarly (rd)(x) € R,.

Proposition 3.2. p@et%h (R) admits a Lie algebra structure over Z(R) N R, with bracket
[(F1,d1)n, (Foyd2)n] = (Fr o Fy — Fp 0 Fy, dy ody — dy o dy)p.

Proof. Well-definedness and the Lie algebra axioms follow from standard commutator properties together
with degree preservation for both F; and d;. O
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Theorem 3.1. For gr-prime rings R, there exists a canonical decomposition
POt (R) = pDetl(R) ® Co(R),

where Ca(R) = {F € p@etggh(R) | F' has zero associated derivation}.
Proof. For any (F,d) € p@et%h(R)7 write F' = d+ (F —d) and set F} =d and F» = F'—d. Clearly, F} €
pDety(R) by definition. A straightforward calculation shows that Fy € Co(R), since Fy(zy) = Fa(z)y
for all z,y € R, and F5 inherits degree preservation from F and d. To see that this decomposition is
direct, it suffices to show that pDetls(R) N Cq(R) = {0}.

Let H € Detly(R)NCq(R). The derivation property gives H(xy) = H(x)y+xH (y), while the condition
H € Cg(R) implies H(zy) = H(x)y. Hence zH(y) = 0 for all z,y € R. Thus zRH(y) = {0} for all

xz,y € R. For any r € H(R) \ {0}, we obtain rRH(y) = {0}. By [l, Proposition 2.1], it follows that
H(y) =0 for all y € R. Therefore H = 0. O

Proposition 3.3. For a gr-domain R with R[t] graded by deg(t) = e, there exists a natural injection
POt (R) — pDer?) (R[t])

given by (F,d), — (F',d" ), where F'(3.ritt) = 3" F(r)tt and d' (3. rit?) = 3. d(r;)t!

Proof. Let (F,d);, € p®et)'(R) and define F',d’ : R[t] — R[t] by

(R)
(Z rﬂf’) = Z F(ry)t, d (Z riti> = Z d(r;)t*

=0

That (F',d"), € p@et ) follows from direct computations. For homogeneity, observe that if f(t) =
Soi o ritt € Rlt];, then n 6 RT, so F(r;),d(r;) € R, by the homogeneity of (F,d)y. Thus F'(f),d (f) €
RJt];. For injectivity, if (F,d)p # (0,0)p, then there exists r € R such that either F'(r) # 0 or d(r) # 0,
which implies F'(r) # 0 or d'(r) # 0 when r is viewed as a constant polynomial. O

The injection in Proposition 3.3 is in general not surjective. For instance, take R = C with the trivial
grading and endow R[t] with the standard Z-grading. Define a derivation d : R[t] — RJ[t] b

d(Zaiti) = Ziaiti,

so that d(t) =t # 0 and d is homogeneous of degree 0. Then (d,d); € p@et%h (R[t]), but (d,d), cannot
belong to the image of the above injection, since any element in the image satisfies d’(¢t) = 0.

Proposition 3.4. For G-graded k-algebras R, S with (Fr,dr)n € p@et%h(R) and (Fs,ds)n € p@etgGh(S),
define

Fros(r®s) =Fr(r)@s+r® Fs(s), drgs(r®s)=dr(r)®s+r®ds(s).
Then (FR®SydR®S)h € p@et%h(R Rk S)
Proof. We extend the definition of Frgs and drgs to all of R ®; S by linearity. To verify that
(Fres,dreos)h is a generalized homogeneous derivation, we must verify that

Frgs(uv) = Frgs(u)v + udrgs(v), drgs(uv) =dpgs(rire ® s152)

for all u,v € R®g S. By linearity, it suffices to check this identity for homogeneous tensors u = r; ® s1
and v = ro ® s9. We have

Fres((r ®s1)(r2 ® s2)) = Fres(rirs @ s1s2)
= FRr(riry) @ s182 + 1172 ® Fs(s152)
= (Fr(r1)ra + r1dg(r2)) ® s1s2 + m17m2 @ (Fs(s1)s2 + s1ds(s2))
= Fr(r1)rs @ s182 + r1dr(r2) @ s152 + 1112 @ Fg(s1)s2 + r172 @ s1ds(s2)
= [Fr(r1) ® s1) + 71 ® Fs(s1)](r2 ® s2) + (r1 ® s1)[dr(r2) ® s2 + 12 @ ds(s2)]
= Fres(r1 ® 51)(12 ® s2) + (r1 @ 51)dRes(r2 ® s2)
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For the homogeneity condition, observe that if r € R, and s € S,, then r ® s € (R ®x S);o. Since
Fr(r) € R; and Fs(s) € Sy, we have Frgs(r®s) = Fr(r)®@s+r® Fs(s) € (R®k S),o Additionally, we
must verify that dgrgs satisfies the Leibniz rule for a homogeneous derivation. For homogeneous tensors
u=r;®s; and v =19 ® S9

drgs(uv) = dres(rir: @ s12)
= (dr(r1)r2 + 11dr(r2)) @ 8182 + 1172 @ (ds(s1)s2 + s1ds(s2))
=dr(r1)r2 @ 8182 + 11dR(r2) ® 8152 + 1172 ® ds(s1)82 + 1172 @ 51d5(52)
=dr(r) ® s1(rs ® s2) +r1 @ ds(s1)(r2 ® s2)
= dpgs(r1 ® s1)(r2 ® s2) + (11 @ 51)dRgs(rs @ s2)

Moreover, drgs(r ® s) € (R ®k S)ro. Hence, (Fres, drgs)n € p@et%h(R QK S). O

4. Some commutativity criteria on gr-prime rings
4.1. Results on homogeneous derivations.
Proposition 4.1. Let R be a gr-prime ring and J a nonzero graded ideal of R such that
[z,y] € Z(R) or zoye€ Z(R)
for all x,y € 3. Then R is a commutative graded ring.
To prove this proposition we need the following lemma.

Lemma 4.1. Let R be a gr-prime ring. Then the following assertions hold.
(1) If 3 is a nonzero graded ideal of R and aJb = {0} where a € H(R) or b € H(R), then a =0 or

b=0.
(2) If d is a homogeneous derivation of R and ad(x) = 0 or d(x)a = 0 for all x € R, then either
a=0o0rd=0.

Proof. (1) Let @ = >° cqar € R and b € H(R) \ {0} such that aJb = {0}. Then, for all r €
JNH(R) we have arb = 0, which implies )~ a-7b = 0. Since every element of R has a unique
homogeneous decomposition, it follows that a,rb = 0 for all r € TN H(R) and all 7 € G. Hence
a;JRb = {0} for all 7 € G. By [!, Proposition 2.1], we obtain a,J3 = {0} for all 7 € G, i.e.
arRJ = {0} for all 7 € G. Thus a, =0 for all 7 € G, and therefore a = 0.

(2) Suppose that ad(xz) = 0 and a # 0. Replacing x by xy, we obtain azd(y) = 0 for all z,y € R. In
particular, aRd(z) = {0} for all x € R. Hence aRd(r) = {0} for all » € H(R). By [, Proposition
2.1], we conclude that d(r) = 0 for all » € H(R), and thus d = 0.

(Il

Proof of Proposition 4.1. Assume first that [z,y] € Z(R) for all z,y € 3. Then
(2, [2,y]] = 0 (1)

for all ,y € J and z € R. Replacing y by yz in (1) and simplifying, we obtain
[, Y]z, 2] =0 (2)

for all z,y € J and z € R. Substituting zy for z in (2) yields
[2,y]2[z,y] = 0
for all z,y € J and z € R, which implies
[, y]R[z, y] = {0}
for all z,y € J. Since J is a graded ideal, we also have
[r1, 7o) R[r1,r2] = {0}

for all 1,79 € INH(R). By gr-primeness of R, it follows that [r;, 73] = 0 for all r1,r2 € INH(R). Hence
[x,y] =0 for all z,y € J, so J is commutative. In view of [I, Proposition 2.1], R is then commutative.


https://orcid.org/0009-0002-2245-4217

GENERALIZED HOMOGENEOUS DERIVATIONS ON GRADED RINGS 9

Now assume that x oy € Z(R) for all z,y € 3. Then

[zoy,2] =0 3)
for all z,y € J and z € R. Replacing y by yz in (3) and simplifying, we obtain
(zoy)[z,z] =0 (4)

for all z,y € J and z € R. Substituting sz for z in (4), we get
(xoy)s[z,z] =0

for all z,y € J and s,z € R. Hence

(z oy)R[z, z] = {0}
for all x,y € J and z € R. In particular,

(r1 o rg)R[ry, 2] = {0}
for all 1,75 € INH(R) and z € R. According to [!, Proposition 2.1], it follows that
riora =0 or [r,2]=0
for all 7,70 € INH(R) and z € R. Thus
zoy=0 or [z,2]=0

for all z,y € J and z € R. In the latter case, J is a central graded ideal, and applying [!, Proposition
2.1], we conclude that R is commutative.
We may therefore assume that z oy = 0 for all x,y € J. Replacing y by yz gives

ylz,z] =0
for all ,y € J and z € R. Since J is a nonzero ideal of R, there exists a € J\ {0} such that

alz,z] =0
for all x € 3 and z € R. Fix r € 3N H(R) and let d, be the inner homogeneous derivation associated
with 7, i.e. d(z) = [r, 2] for z € R. Then

ad,(z) =0
for all z € R. By Lemma 4.1(2), we obtain d,(z) = [r, 2] = 0 for all z € R. Hence [z,z] =0 forallz €7
and z € R. In both cases, we find that J is a central graded ideal of R. Therefore, R is commutative. [

The next result characterizes when compositions of homogeneous derivations force commutativity.

Theorem 4.1. Let R be a gr-prime ring of characteristic different from 2. Suppose di and ds are nonzero
homogeneous derivations of R such that

dldg(x) S Z(R)
for all x € R. Then R is a commutative graded ring.

Proof. By hypothesis,

dldg(aj) S Z(R) (5)
for all z € R. Replacing x by [z,y] in (5) and expanding, we obtain
[da(2), di(y)] + [di (), d2(y)] € Z(R) (6)

for all z,y € R. Putting y = d2(2) in (6) yields
[di(x),d3(2)] € Z(R)
for all z,z € R. In particular,
[d3(r), di(y)] € Z(R)
for all r € H(R) and y € R. By [/, Lemma 2.2, it follows that either d3(r) € Z(R) for all r € H(R) or
di1 = 0. The latter is impossible by assumption, so d3(z) € Z(R) for all z € R. Taking [z, z] instead of

r, we obtain

2[ds(z), da(2)] € Z(R)
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for all x,z € R. Since char R # 2, it follows that
[da(x), d2(2)] € Z(R)
for all z,z € R. By [, Theorem 3.5], we conclude that R is commutative. O

The following example proves that the gr-primeness hypothesis in Theorem 4.1 is not superfluous. In
particular, our theorem cannot be extended to gr-semiprime rings.

Example 4.1. Consider the ring R = Clty, ta,ts3,ts] X Ma(C) with Z x Z4-grading. R is gr-semiprime.
We define homogeneous derivations dy,ds : R — R by

di (f, M) = (t2t4%,0)7 da (f, M) = (t1t3%,0> :
We have dids(x) € Z(R) for all x € R, thus satisfying the condition of Theorem 4.1. Nevertheless, R is
noncommutative.

4.2. Results on generalized homogeneous derivations. In this subsection, we extend classical commuta-
tivity theorems from prime ring theory to the graded setting, giving necessary and sufficient conditions
under which generalized homogeneous derivations force gr-prime rings to be commutative.

Proposition 4.2. Let R be a gr-prime ring and (F,d), a generalized homogeneous derivation of R. If
d #0, then F' # 0.

Proof. Assume F' = 0. For any elements z,y € R, we have F(zy) = 0. Since
F(xy) = F(x)y + zd(y),

it follows that zd(y) = 0 for all z,y € R. Hence xRd(y) = {0} for all z,y € R. In particular, for some
nonzero homogeneous element r € H(R) \ {0}, we have rRd(y) = {0} for all y € R. According to [I,
Proposition 2.1], this implies d(y) = 0 for all y € R. Thus d = 0, which contradicts the assumption. O

In [2], it was shown that a prime ring R with a nonzero ideal J is commutative if it admits a generalized
derivation F' satisfying
F(zy)xaoye Z(R) or F(x)F(y)tzy e Z(R)
for all z,y € J. We now extend this result to gr-prime rings in the context of generalized homogeneous
derivations.

Theorem 4.2. Let R be a gr-prime ring and J a nonzero graded ideal of R. If R admits a generalized
homogeneous derivation F with associated nonzero homogeneous derivation d such that
F(xy) 2y € Z(R)

for all x,y € J, then R is commutative.

Proof. Consider the case

F(zy) —zy € Z(R)
for all 2,y € J. Using the same reasoning as in the proof of [2, Theorem 2.1], we obtain the identity

[2, z1]zyd(z) = 0

for all x,y, z, 21 € J, which yields [z, z1]JxRJId(z) = {0} for all x, 2,21 € J. Since J is a graded ideal of R,
we have

[r', z1]zRrd(r") = {0}
for all ,2z; € J and r,r’ € INH(R). According to [I, Proposition 2.1], either [z1,7']z =0 or rd(r’) =0
for all z,z1 € J and r,r" € INH(R). This implies that

[2,21]3={0} or Jd(z)={0}
for all z,z; € J. Define
J1={2€T|[2,21)3={0} forall 2y € T}, To={z€T|Td(z) ={0}}.

Then J; and J5 are additive subgroups of J with J = J; U Js. Since a group cannot be expressed as the
union of two proper subgroups, either J; = J or J3 = J. We consider these cases separately.
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Case 1: If [z1,2]3 = {0} for all 2,z € T, then, since J is an ideal, we obtain [z1,2]RJ = {0} for all
z,2z1 € J. As J is a nonzero graded ideal, there exists r € 3N H(R) \ {0} such that

[z, z1]Rr = {0}

for all z,z; € 3. By [, Proposition 2.1], it follows that [z, z;] = 0 for all z, 21 € J. Hence J is commutative.
Therefore, R is commutative.
Case 2: If 3d(z) = {0} for all z € 7, then JRd(z) = {0} for all z € 7. In particular, rRd(z) = {0} for
some 7 € JNH(R)\ {0} and all z € J. Using ||, Proposition 2.1|, we obtain d(z) = 0 for all z € 3. Hence
d vanishes on J. By [I, Lemma 2.6, d is zero on R, which is a contradiction.

For the second case F(xy) + 2y € Z(R) for all z,y € J, the argument reduces to the first case by
considering —F instead of F. (]

Next, we extend [2, Theorem 2.5] to gr-prime rings by considering a pair of generalized homogeneous
derivations Fy and F» satisfying

Fi(z)Fa(y) 2y € Z(R)
for all x,y in a graded ideal J of R.
Theorem 4.3. Let R be a gr-prime ring and J a nonzero graded ideal of R. If R admits two gener-

alized homogeneous derivations Fy and Fy with associated nonzero homogeneous derivations dy and ds,
respectively, such that

Fi(z)Fa(y) £ oy € Z(R)

for all x,y € J, then R is commutative.

Proof. Consider the case

Fi(z)Fy(y) —zy € Z(R) (7)
for all z,y € J. Substituting yz for y in (7), we obtain
(Fi(x)Fa(y) — zy)z + Fi(x)ydz(2) € Z(R) (8)
for all z,y € J and z € R. Taking the commutator of (8) with z, we obtain
Fy(2)[yda(2), 2] + [Fi(x), 2]yda(2) = 0 (9)

for all ,y € J et z € R. Substituting F}(x)y for y in (9), we arrive at
[F1(z), 2] F1 (x)yda(2) = 0 (10)
for all z,y € J and z € R. This implies [F} (), 2] F1(z)RId2(z) = {0} for all z € T et z € R. In particular,
[F1(r),r'|Fi(r)RIda(r") = {0}
for all r € INH(R) and ' € H(R). According to [, Proposition 2.1], either
[Fi(r),7'|Fi(r) =0 or 3Jds(r") = {0}

for all r € INH(R) and ' € H(R). Thus, [Fi(x),z]Fi(z) = 0 or Jd2(z) = {0} for all x € J and z € R.
Let

Ji={z€R|[Fi(x),2]Fi(z) =0 for all z € 3}, Jo={z € R|JIda(2) = {0}}.

Clearly, J; and Js are additive subgroups of R whose union is R. Since a group cannot be the union of
two proper subgroups, either J; = R or J2 = R.

If 3o = R, then Jda(z) = {0} for all z € R. Since J is an ideal, JRd2(z) = {0} for all z € R. In
particular, rRds(z) = {0} for all z € R and some r € INH(R) \ {0}. According to [!, Proposition 2.1],
we conclude that da(z) = 0 for all z € R. Hence do = 0, which contradicts our assumption. Therefore,
[Fi(z),2]Fi(x) =0 for all x € T and 2z € R. Replacing z by zz’, we obtain [Fi(x), 2]z Fi(z) = 0 for all
x € Jand z,z’ € R, which implies [Fy(z), 2] RF1(z) = {0} pour tous = € J et z € R. In particular,

[F1(r), 2] RFy(r) = {0}



12 YASSINE AIT MOHAMED

for all » € 3N H(R) and z € R. Invoking [I, Proposition 2.1], we conclude that either Fi(r) = 0 or
[Fi(r),z] =0 for all z € R. Hence Fy(x) =0 or [Fi(x),z] =0 for all z € J and z € R. In both cases, we
obtain [Fy(z),z] = 0 for all x € J and z € R. Replacing by xz, we obtain

x[d1(2), 2] + [z, 2]d1(2) =0 (11)

for all x € J and z € R. Substituting sz for  in (11), we arrive at [s, z]zd;(z) = 0 for all x € J and
s,z € R, which implies [s, 2|RJd1(z) = {0} for all s,z € R. Using similar arguments as above, either
[s,2] =0 or di(z) =0 for all s,z € R. Since d; # 0, we must have [s,z] = 0 for all s,z € R. Therefore,
R is commutative.

For the second case Fy (z)Fa(y) +xy € Z(R) for all ,y € J, the argument reduces to the first case by
considering —F} instead of F}. O

The following example shows that the gr-primeness hypothesis cannot be omitted from the above
theorems.

Example 4.2. Let R = C[tq, 2, t3] X {( 8 8

prime. Let 3 = C[ty, ta,t3] X {( 8 8 ) ’ a € (C} . Clearly, J is a nonzero graded ideal of R. Consider

) ’ a,be (C} with Z X Zo-grading. Then R is not gr-

the mappings:
Fy: R — R Fy=ds: R — R
(f M) = (ts(f+5L),0) (f, M) = (hgh.0)°

and
d1 : R — R

(f,M) — (tztg%,()).
Then (F1,d1)n and (Fa,ds2)n are generalized homogeneous derivations on R. Moreover, Fy(zy) + xzy €
Z(R) and Fy(x)F2(y) £ xzy € Z(R) for all x,y € 3. However, R is noncommutative.

5. Existence Conditions for Central Graded Ideals in Gr-Semiprime Rings

In this section, we investigate the behavior of graded ideals under generalized homogeneous derivations,
and we characterize when such rings necessarily contain nonzero central graded ideals.

In [3], it was shown that if a ring R admits generalized derivations F; and F» with associated nonzero
derivations d; and ds, respectively, such that

Fi(z)x £ axF3(z) =0

for all z € J, where J is a nonzero ideal of R, then R contains a nonzero central ideal. We extend this
result to the graded case by studying generalized homogeneous derivations F; and Fj satisfying

Fi(z)y £ xFy(y) € Z(R)
for all x,y € J, where J is a graded ideal of a gr-semiprime ring R.

Theorem 5.1. Let R be a gr-semiprime ring and J a nonzero graded ideal of R. Suppose that R
admits generalized homogeneous derivations Fy and Fs with associated homogeneous derivations d; and
da, respectively, with do(J) # {0}. If

Fi(z)y £ zFs(y) € Z(R)
for all x,y € 3, then R contains a nonzero central graded ideal.

Proof. We begin with the case

Fi(z)y — 2Fa(y) € Z(R) (12)
for all z,y € J. Substituting yz for y in (12), we obtain
(Fi(2)y — 2Fa(y))z — wyda(2) € Z(R) (13)

for all x,y, 2 € J. Taking the commutator of (13) with z yields
zylda(2), 2] + 2(y, 2]d2(2) + [2, 2]yda(2) = 0 (14)
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for all z,y, 2 € J. Substituting da(z)z for x in (14), we obtain

[da(2), z]Jzyda(z) =0 (15)
for all z,y, z € J. Substituting dy(2)y for y in (15), we obtain
[d2(2), z]wda (2)yda(2) = 0 (16)

for all x,y, z € J. By subtracting (16) from (15) and using the previous identities, we get

[d2(z)a Z]x[dQ(Z)u Z]y[d2(2)7 Z} =0
for all z,y, z € 3. This implies

[d2(2), 2]3[d2(2), 2]T[d2(2), 2] = {0}
for all z € J. Since R is gr-semiprime, there exists a family F := {P; | ¢ € A} of gr-prime ideals such that
Mica Pi = {0}. Therefore,

[d2(2), 2]3[d2(2), 2]3[d2(2), 2] € P;
for all i € A and all z € 3. By [I, Proposition 2.1], and since 7 is a graded ideal, we have [d2(2), 2] € P;
for all i € A and z € J. Hence [da(z),2] = 0 for all z € 3. Thus, by [!, Theorem 4.1], R contains a
nonzero central graded ideal.

For the second case
Fi(z)y +aF(y) € Z(R)

for all x,y € J, the argument reduces to the first case by considering — F5 instead of Fb. O

From Theorem 5.1 and [!, Proposition 2.1], we obtain the following corollary.

Corollary 5.1. Let R be a gr-prime ring and J a nonzero graded ideal of R. Suppose that R admits
generalized homogeneous derivations Fy and Fs with associated nonzero homogeneous derivations dy and
da, respectively, satisfying

Fi(z)y £ 2F2(y) € Z(R)
forall x,y € 3. Then R is commutative.

Using similar arguments with appropriate modifications, and considering the cases F; = F or F} =
—F5 in Theorem 5.1, we obtain the following result. This extends the graded version of Posner’s Sec-
ond Theorem [|, Theorem 3.3] to generalized homogeneous derivations on gr-prime rings, providing a
characterization of commutativity.

Corollary 5.2. Let R be a gr-prime ring and J a nonzero graded ideal of R. Suppose that R admits a
generalized homogeneous derivation F with associated homogeneous derivation d such that

[F(x), 2] € Z(R)
for all x € 3. Then R is commutative.

Corollary 5.3. Let R be a gr-prime ring and J a nonzero graded ideal of R. Suppose that R admits a
generalized homogeneous derivation F' with associated nonzero homogeneous derivation d such that

F(z)oxz € Z(R)
for allx € 3. Then R is commutative.

The following example shows that the gr-semiprimeness assumption in Theorem 5.1 cannot be omitted.

= {(; )leoer)

be a Zs-graded ring. Clearly, R is not gr-semiprime. Define generalized homogeneous derivations (Fy,dy)p,
and (Fa,d3)n on R by

B R R Fy: R — R

—
a b . a 2b and a b . 0 a+2b
0 0 0 O 0 0 0 0

Example 5.1. Let
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a(38)=(8) wen
(1) oe3

be a graded ideal of R. Even though Fy and Fs satisfy the conditions of Theorem 5.1, the ring R has no
nonzero central graded ideal.

and

Let

6. Generalized Homogeneous Derivations on Graded Modules

In this section, we systematically extend the theory to graded modules by introducing generalized
homogeneous derivations on modules, establishing their functorial properties, and constructing the asso-
ciated categorical framework.

Definition 6.1. Let R be a G-graded ring and M o G-graded R-module. An additive mapping Fyy :
M — M is a generalized homogeneous derivation f there exists a homogeneous derivation d : R — R
such that

(i) Fy(rm) =d(rym+rFy(m) for allr € R, m € M;
(ii) Far(m) € H(M) for all m € H(M).

We denote such pairs by (Far,d)par and let @et%h(R, M) denote the set of all generalized homogeneous
derivations on M.

Example 6.1. Let R = Cl[t1,ts] with the standard Z-grading, and let M = R? with grading M, =

{(f1, f2) | fi € Rn}. Define
ofi 0
F(fl7f2) = <a{117 8tf12)
with associated derivation d(f) = %' Then (F,d)pm € @et%h(R, M).

Definition 6.2. A graded submodule N C M is gr-differential with respect to (Far,d)pp if Far(N) C N.

Example 6.2. Consider the generalized homogeneous derivation (Far,d)n a from Example 6.1. Then
the graded submodule N = {0} & R C M is gr-differential with respect to (Far,d)p -

Definition 6.3. A generalized homogeneous derivation (Fp,d)n am is gr-generalized if Fiar(M,) C M,
and d(R;) C R, for all T € G.

The set of gr-generalized derivations on M is denoted p@et%h(R, M).

Proposition 6.1. p@et%h(R, M) forms a Z(R) N Re-module under pointwise operations and scalar mul-
tiplication a - (Far, d)n,v = (aFa, ad)p v for a € Z(R) N Re.
Proof. Centrality of scalars ensures
(aFa)(rm) = aFy(rm) = a(d(r)m 4+ rEFy(m)) = (ad)(r)m + r(aFp)(m),
while degree preservation follows from a € R, and the grading properties of Fj; and d. ([l

Proposition 6.2. For finite families {M;};c1 of graded R-modules:
(1) If (Fu,, dnom, € p@et%h(R, M;) share the same associated derivation d, then
Fep a, ((ma)i) = (Far, (mi))i
defines a canonical gr-generalized derivation on @, ; M;.
(2) If (Far, ), (Fn,d)pn € p@et%h(R, M),p@et%h(R, N) have the same associated derivation d,
then
Fygn(m®n) = Fy(m) ®@n+m® Fy(n)

defines a canonical gr-generalized derivation on M ®@gr N.
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Proof. (1) For the direct sum, let (m;)ie; € @,c; M; and r € R. Then
Fgym, (r(mi)ier) = (Far, (rma))ier = (d(r)mi + 7Far, (ma))ier = d(r)(mai)ier + 7Fgy ar, ((mi)ier).
For degree preservation, let (m;);c; be homogeneous of degree 7 € G in the direct sum. Then each
nonzero m; is homogeneous of degree 7, and since each F);, preserves degrees, Fi,(m;) is either zero
or homogeneous of degree 7. Hence (Fyr,(m;))icr is homogeneous of degree 7, so Fgy s, preserves the
grading.
(2) For r € R, m € M, and n € N,, we have
Fygn(rim@n)) = Fygn(rm @ n)
=Fy(rm)®@n+rm® Fy(n)
=(d(rym+rFy(m))@n+rm® Fy(n)
=d(rme@n+rFy(m)@n+rm® Fy(n)
=d(r)(men)+r(Fy(m)@n+me Fy(n))
=d(r)(ime@n)+rEFygn(m®n).
For degree preservation, if m € M, and n € N,, then m ® n € (M ®g N),,. Since Fyr(m) € M, et
Fyn(n) € N, we have
Fygn(m@n)=Fy(m)@n+m® Fy(n) € (M Qg N)qo.

Thus Fiagn preserves the grading. (]

Definition 6.4. A graded R-module homomorphism ¢ : M — N is a gr-generalized homomorphism if
poFpy =Fyog
for (Fag,d)p v € pDerd (R, M) and (Fy,d)n n € pDerdy' (R, N).

Example 6.3. Let {M;}ics be a finite family of graded R-modules with direct sum M = @, ; M;. If each

M; admits a gr-generalized derivation (Fa,,d)n m, € p@et*éh(R, M;) with the same associated derivation
d, then the canonical projection maps m; : M — M; are gr-generalized homomorphisms with respect to
the gr-generalized derivations (Fyr,d)p,n on M and (Fag;, d)pa; on Mj.

Proposition 6.3. Let ¢ : M — N be a surjective graded R-module homomorphism between G-graded
modules such that ker(¢) is a gr-differential submodule of M. Then there exists a well-defined Z(R)N R,-
linear map

o» :p@et%h(R, M) — p@et%h(R, N)
such that for any (Far, d)pm € p@et%h(R, M) with Fyr(ker ¢) C ker ¢, the induced map is (Fn,d)n,n =
G+ ((Fars d)nar)-
Proof. Since ¢ is surjective, for each n € N there exists m € M with ¢(m) = n. Define Fy : N — N by

Fy(n) = ¢(Far(m)),
where m is any preimage of n. To see that Fy is well defined, suppose ¢(m1) = ¢(my) = n. Then
m1 — me € ker ¢, and by hypothesis

FM(m1 — mz) € ker ¢.
Hence ¢(Far(mq)) = ¢(Far(ms)). For the gr-generalized derivation property, let » € R and n € N, and
choose m € M with ¢(m) =n. Then
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For homogeneity, if n € N, then, since ¢ is graded, we can choose m € M, with ¢(m) = n. As Fy
preserves degrees, Fiyr(m) € M,, and thus

Fy(n) = 6(Fa(m)) € 6(M;) C N

The Z(R) N R.-linearity of ¢, follows from the linearity of ¢ and the module structure on p@et%h(R, M).
O

Corollary 6.1. For graded isomorphisms ¢ : M — N, the induced map
¢u - pDetd (R, M) — pDerZy (R, N)
is a Z(R) N R.-module isomorphism, with inverse
u((Fn,d)n,n) = (07" 0 Fy 0 ¢, d)n,nr-

Proof. The canonical projection m : M — M /N is surjective, and since Fy;(N) C N by hypothesis, we
have Fyy(ker ) C ker . By Proposition 6.3, there exists a well-defined Z(R) N R.-linear map

Tt pDetd (R, M) — pDecdy' (R, M/N)
such that m.((Far,d)n,n) = (Fyyn, d)nvyn, where Fpyn(m(m)) = w(Far(m)) for all m € M. Well-
definedness of Fy;/y follows from Fy(N) € N. The gr-generalized derivation property is checked by
verifying
F]V[/N(Tm) = d(?")m + TFM/N(W)
for all r € R and m € M/N. For homogeneity, if m € (M/N),, write m = m, +n with m, € M, and
n € N. Since Fs preserves degrees and Fy (N) C N, we get
Fyyn(m) = n(Fy(my)) € (M/N)-.

The commutativity relation Fys/y o7 = 7o Fjy makes m a gr-generalized homomorphism. Uniqueness
follows because any other gr-generalized derivation F, IN satisfying F;, /NOT =TO Fjy must coincide
with Fj/n on all cosets. O

Definition 6.5. The category ///gh is defined as follows.
(i) Objects: Triples (R, M, (Fur,d)p ) where R is G-graded, M is a graded R-module, and (Far, d)p a1 €
POt (R, M).
(ii) Morphisms: Pairs (¢,¢) : (R, M, (Far,d)par) = (S, N, (Fn,e)n.n) where ¢ : R — S is a graded
ring homomorphism, ¥ : M — N is ¢p-semilinear, and the diagrams

M-t N R—"45
lFM lFN ld l
M-t N R-—",5

commaute.
Theorem 6.1. (//lgh is a well-defined category.
Proof. Composition is well defined: Let
(0,9) : (R, M, (Fanyd)n,me) — (S, N, (Fys€)n,n)
and
(¢, 9") : (S,N,(Fn,e)nn) = (T, P,(Fp, f)n.p)

be morphisms in ///gh. We must show that (¢’ o ¢, v’ o0 4)) is again a morphism. First, ¢’ o9 is (¢’ o ¢)-
semilinear:
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Next, we check compatibility with the derivations and module maps:

(' o)) o Fay = 9" o (Fy o) = Fpo (¢ 09),
and similarly
(¢ og)od=fol(d op)
Identity morphisms: For any object (R, M, (Fas,d)n,m), the pair (idg,idas) satisfies
idys(rm) = rm = idg(r)idysr(m), iday o Fpyy = Fayy = Fypoidy, idgrod=d=doidg,

and is therefore a morphism in ///gh.
Associativity and identity laws: These follow directly from the associativity and identity properties of
function composition. O
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