
GENERALIZED HOMOGENEOUS DERIVATIONS ON GRADED RINGS

YASSINE AIT MOHAMED

Abstract. We introduce a notion of generalized homogeneous derivations on graded rings as a nat-
ural extension of the homogeneous derivations defined by Kanunnikov. We then define gr-generalized
derivations, which preserve the degrees of homogeneous components. Several significant results orig-
inally established for prime rings are extended to the setting of gr-prime rings, and we characterize
conditions under which gr-semiprime rings contain nontrivial central graded ideals. In addition, we
investigate the algebraic and module-theoretic structures of these maps, establish their functorial prop-
erties, and develop categorical frameworks that describe their derivation structures in both ring and
module contexts.

1. Introduction

Derivations are fundamental mappings in ring theory that capture differential-like behavior while
preserving the underlying algebraic structure. They play a central role in the study of ring-theoretic
properties, especially in characterizing commutativity and detecting structural invariants in algebraic
systems. Since their introduction, derivations have been the subject of numerous generalizations. A
major development was Brešar’s introduction of generalized derivations [5], which opened a rich line of
research (see, for example, [6], [7], [11], [12]). This broader framework has proved to be remarkably
effective in extending many classical results that were originally established for standard derivations
(cf. [4], [9], [10], [10]).

In parallel, the theory of graded rings has become a central tool in modern algebra. Graded structures
naturally arise in various mathematical contexts, including group rings, polynomial rings, tensor algebras,
and cohomology theories. They provide refined structural information that supports both classification
and characterization results. The two strands, generalized derivations and graded structures, were par-
tially unified by Kanunnikov in 2018 through the introduction of homogeneous derivations on graded rings
[8]. Homogeneous derivations are classical derivations that, in addition, preserve the grading: they map
homogeneous elements to homogeneous elements and thus simultaneously respect both the differential
and graded structures of the ring.

In our earlier work [1], several classical theorems on derivations were extended to the graded setting.
For instance, we established graded analogues of Posner’s theorem for gr-prime rings of characteristic
different from 2: if the composition of two derivations (with at least one of them homogeneous) is again
a derivation, then one of them must be trivial. We also showed that if a gr-prime ring admits a nonzero
homogeneous derivation that is centralizing on a nonzero graded ideal, then the ring is commutative.
Moreover, we proved a graded version of Herstein’s theorem: in gr-prime rings of characteristic not
equal to 2, if two nonzero homogeneous derivations have Lie bracket contained in the center, then the
ring is commutative. For gr-semiprime rings, we showed that homogeneous derivations satisfying suitable
centralizing conditions guarantee the existence of nonzero central graded ideals. Building on these results,
the present paper introduces generalized homogeneous derivations on graded rings, develops their basic
properties, and studies their behavior in both ring and module contexts. Our goal is to extend the theory
of generalized derivations to the graded setting in a way that preserves the rich graded structure while
revealing new algebraic phenomena.

Let G denote a group with identity element e. A ring R is called G-graded if it can be decomposed
as R =

⊕
τ∈GRτ into additive subgroups such that Rτ1Rτ2 ⊂ Rτ1τ2 for all τ1, τ2 ∈ G. The collection

of homogeneous elements H(R) =
⋃
τ∈GRτ consists of elements a ∈ Rτ having degree deg a = τ .

Each element x ∈ R has a unique representation x =
∑
τ∈G xτ where xτ ∈ Rτ are the homogeneous
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components. The graded structure naturally extends to tensor products through

(R⊗K S)γ =
⊕
τσ=γ

Rτ ⊗K Sσ

for G-graded K-algebras and similarly to polynomial rings.
An ideal I ⊆ R is graded when I =

⊕
τ∈G(I∩Rτ ), where we denote Iτ = I∩Rτ . Ring homomorphisms

φ : R→ S between G-graded rings are graded if φ(Rτ ) ⊆ Sτ , Hom(R,S)gr denoted the set of all graded
homomorphisms. When I is graded, quotient rings inherit the canonical grading structure (R/I)τ :=
{r̄ ∈ R/I | r ∈ Rτ}. A graded ring R is gr-prime if aRb = {0} implies a = 0 or b = 0 for homogeneous
elements a, b ∈ H(R), and gr-semiprime if aRa = {0} implies a = 0 for a ∈ H(R).

A G-graded module over a G-graded ring R decomposes as M =
⊕

τ∈GMτ with the compatibility
condition Rσ ·Mτ ⊆Mστ . Graded homomorphisms satisfy f(Mτ ) ⊆ Nτ , and tensor products exhibit the
multiplicative grading

(M ⊗R N)k =
⊕
τσ=k

Mτ ⊗R Nσ.

An additive mapping d : R → R is a derivation if it satisfies the Leibniz rule d(xy) = d(x)y + xd(y)
for all x, y ∈ R. A derivation d is homogeneous if d(H(R)) ⊆ H(R) ([8]). Inner derivations have the
form d(x) = [a, x] for some fixed a ∈ R, where [a, x] = ax − xa denotes the commutator. A generalized
derivation is an additive mapping F : R→ R satisfying F (xy) = F (x)y + xd(y) for all x, y ∈ R, where d
is the associated derivation of F .
Organization of the paper. In §2, we define generalized homogeneous derivations on graded rings,
establish their main properties, and develop a functorial framework. In §3, we introduce gr-generalized
derivations, which preserve degrees of homogeneous components, and study their algebraic and Lie-
theoretic structures. In §4, we study commutativity criteria for gr-prime rings. Section §4.1 examines
conditions under which homogeneous derivations force commutativity via Lie brackets and Jordan prod-
ucts. In §4.2, we extend classical results from prime rings to gr-prime rings under the action of gen-
eralized homogeneous derivations. In §5, we identify when gr-semiprime rings contain nonzero central
graded ideals by means of generalized homogeneous derivations, yielding graded analogues of Posner-type
results. Finally, in §6, we extend the framework to graded modules, introduce generalized homogeneous
derivations on modules, study their functorial behavior, and construct the associated category M gh

G .
Conventions. Throughout this paper, we adopt the following conventions.

• All polynomial rings C[t1, . . . , tn] are equipped with the standard Z-grading by total degree,
where deg(ta11 · · · tann ) = a1 + · · ·+ an.

• The ± notation: When a condition involves the symbol ±, such as

F (xy)± xy ∈ Z(R) or F1(x)F2(y)± xy ∈ Z(R),

we mean that at least one of the two possibilities holds. Note that the case with − can always be
reduced to the case with + by replacing F (or F1, F2) by −F (or −F1,−F2). Thus, the proofs
typically establish the result for one sign and invoke this reduction for the other.

• Abelian grading group: We restrict our attention to abelian grading groups G throughout. This
assumption is essential because, in general, the Lie bracket [x, y] = xy − yx and the Jordan
product x ◦ y = xy + yx do not preserve homogeneity when applied to homogeneous elements,
as illustrated in the following example. The abelian condition guarantees the preservation of
homogeneity, which is essential for the commutator-based techniques used in this paper.

Example 1.1. Let R =M4(k) denote the ring of 4× 4 matrices over a field k, and let D10 = ⟨a, b | a5 =
b2 = e, bab = a−1⟩ be the dihedral group of order 10. We define a D10-grading on R by setting

Re :=


k 0 0 0
0 k 0 0
0 0 k 0
0 0 0 k

 , Ra :=


0 k 0 0
0 0 k 0
0 0 0 0
0 0 0 0

 , Ra2 :=


0 0 k 0
0 0 0 0
0 0 0 0
0 0 0 0


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Ra3 :=


0 0 0 0
0 0 0 0
k 0 0 0
0 0 0 0

 , Rb :=


0 0 0 0
0 0 0 k
0 0 0 0
0 k 0 0

 , Rab :=


0 0 0 k
0 0 0 0
0 0 0 0
k 0 0 0



Ra4b :=


0 0 0 0
0 0 0 0
0 0 0 k
0 0 k 0

 , Ra4 :=


0 0 0 0
k 0 0 0
0 k 0 0
0 0 0 0

 , Ra2b = Ra3b = {0}.

One verifies by direct computation that

[Rb, Ra4 ] = Rb ◦Ra4 =


0 0 0 0
0 0 0 0
0 0 0 k
k 0 0 0

 ̸⊂ H(R).

2. Generalized homogeneous derivations

We introduce generalized homogeneous derivations on G-graded rings and establish their functorial
properties.

Definition 2.1. Let R be a ring graded by an arbitrary group G. An additive mapping F : R → R is
called a generalized homogeneous derivation if there exists a homogeneous derivation d : R → R such
that

(i) F (xy) = F (x)y + xd(y) for all x, y ∈ R;
(ii) F (r) ∈ H(R) for all r ∈ H(R).

The mapping d is called an associated homogeneous derivation of F .

We denote such a generalized homogeneous derivation by (F, d)h, where the subscript ‘h’ emphasizes
the homogeneity condition. The collection of all generalized homogeneous derivations of R is denoted by
DerghG (R).

Example 2.1. Let R =Mn(C[t]) with Z2-grading where R0 consists of matrices with polynomial entries
having only even-degree monomials, and R1 consists of matrices with polynomial entries having only odd-
degree monomials. Define d : R → R by d(A) = d

dt (A) (entrywise differentiation) and F : R → R by
F (A) = tA+ d(A). Then (F, d)h is a generalized homogeneous derivation.

We now highlight several key properties of generalized homogeneous derivations that follow directly
from Definition 2.1.

Remark 2.1. Let R be a G-graded ring, and let (F1, d1)h and (F2, d2)h be generalized homogeneous
derivations of R. In general, the sum F1 +F2 does not define a generalized homogeneous derivation. For
instance, consider the polynomial ring C[t1, t2, t3] equipped with the standard Z-grading. Define

F1(f) = d1(f) = t3
∂f

∂t1
and F2(f) = d2(f) =

∂f

∂t2
.

Then their sum acts as
(F1 + F2)(f) = t3

∂f

∂t1
+
∂f

∂t2
,

which does not preserve homogeneity. This example shows that the set DerghG (R) of generalized homoge-
neous derivations does not carry a natural additive structure.

Proposition 2.1. Let R be a nontrivially G-graded ring. Then the following inclusions hold

DerhG(R) ⊊ DerghG (R) ⊊ Gen(R),

where DerhG(R) and Gen(R) denote the sets of homogeneous derivations and generalized derivations on
R, respectively. Both inclusions are strict.
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Proof. The inclusions follow directly from the definitions. For strictness, consider R = C[t1, t2] with the
standard Z-grading. Define

F (f) = t1f + t1t2
∂f

∂t1
and d(f) = t1t2

∂f

∂t1
.

Then (F, d)h ∈ DerghG (R). However, F /∈ DerhG(R). For the second inclusion, define G(f) = t1f + ∂f
∂t2

.
Then G ∈ Gen(R) but G /∈ DerghG (R). □

In the following proposition, we establish several sufficient conditions for the existence of nonzero
generalized homogeneous derivations on a graded ring R.

Proposition 2.2. Let R be a G-graded ring. Then R admits a nonzero generalized homogeneous deriva-
tion if any of the following holds:

(1) R has a nonzero homogeneous derivation.
(2) Rσ ∩ Z(R) ̸= {0} for some σ ∈ G.
(3) R admits a nonzero graded endomorphism.
(4) CR(Re) = R and Re ̸= {0}.

Proof. (1) If d ̸= 0 is a homogeneous derivation, then (d, d)h is a nonzero generalized homogeneous
derivation by definition.

(2) For a nonzero a ∈ Rσ ∩Z(R), define Fa(r) = ar. Since a is central and homogeneous, Fa preserves
homogeneous elements, and (Fa, 0)h satisfies the required conditions.

(3) Any nonzero graded endomorphism φ : R → R yields (F, 0)h where F = φ, because graded
endomorphisms preserve homogeneous components.

(4) For a nonzero b ∈ Re with CR(Re) = R, define Fb(r) = br. The centrality condition ensures that
(Fb, 0)h is well defined and nonzero. □

Definition 2.2. Let R be a G-graded ring and (F, d)h a generalized homogeneous derivation. A graded
ideal I is gr-differential if d(I) ⊆ I and F (I) ⊆ I.

Remark 2.2. Not all graded ideals are gr-differential. For instance, in R[t1, t2] with (F, d)h defined
by F (P ) = d(P ) = ∂P

∂t1
, the graded ideal I = ⟨t1t2⟩ fails the gr-differential property since d(t1t2) =

t2 /∈ I. However, restrictions of generalized homogeneous derivations to gr-differential ideals preserve the
derivation structure.

Proposition 2.3. Let (F, d)h be a generalized homogeneous derivation of a G-graded ring R, and let
{Iβ}β∈Λ be gr-differential ideals. Then

⋂
β∈Λ Iβ,

∏
β∈Λ Iβ, In for n ≥ 1, and

∑
β∈Λ Iβ are gr-differential

ideals.

Proof. Each operation preserves both the graded ideal property and the invariance conditions d(I) ⊆ I
and F (I) ⊆ I. □

Remark 2.3. Let I be a gr-differential ideal with respect to (F, d)h in a G-graded ring R. Then (F, d)h
induces a well-defined generalized homogeneous derivation (F̃ , d̃)h on the quotient ring R/I via the natural
definitions F̃ (x) = F (x) and d̃(x) = d(x). The gr-differential property ensures independence from coset
representatives, while the derivation structure transfers canonically to the quotient.

Proposition 2.4. Let {Ri}i∈I be a finite collection of Gi-graded rings. Then

Dergh∏
i∈I Gi

(∏
i∈I

Ri

)
∼=
∏
i∈I

DerghGi
(Ri).

Proof. Define Φ : DerghG (R) →
∏
i∈I DerghGi

(Ri) by Φ((F, d)h) = ((F1, d1)h, . . . , (Fn, dn)h) where Fi(ri) =
πi(F (ei(ri))) and di(ri) = πi(d(ei(ri))). Here ei : Ri → R and πi : R → Ri are the canonical em-
bedding and projection maps. The inverse Ψ is defined by Ψ((F1, d1)h, . . . , (Fn, dn)h) = (F, d)h where
F (r1, . . . , rn) = (F1(r1), . . . , Fn(rn)) and d(r1, . . . , rn) = (d1(r1), . . . , dn(rn)). A direct verification shows
Ψ ◦ Φ = id and Φ ◦Ψ = id. □

https://orcid.org/0009-0002-2245-4217
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Proposition 2.5. Let ϕ : R→ S be a surjective graded homomorphism with kerϕ a gr-differential ideal.
Then ϕ induces

ϕ∗ : DerghG (R) → DerghG (S)

defined by ϕ∗((FR, dR)h) = (FS , dS)h where FS(ϕ(r)) = ϕ(FR(r)) and dS(ϕ(r)) = ϕ(dR(r)).

Proof. Well-definedness follows from the gr-differential property of ker(ϕ). The derivation properties
transfer directly via surjectivity of ϕ and the graded homomorphism properties. □

Proposition 2.6. Let φ : R→ S be a graded isomorphism. Then

Φφ : DerghG (R) → DerghG (S), Φφ((FR, dR)h) = (φ ◦ FR ◦ φ−1, φ ◦ dR ◦ φ−1)h

is a bijection.

Proof. Conjugation by isomorphisms preserves derivation structures. The inverse is Φ−1
φ ((FS , dS)h) =

(φ−1 ◦ FS ◦ φ,φ−1 ◦ dS ◦ φ)h. □

Corollary 2.1. |DerghG (R)| is invariant under graded automorphisms.

Definition 2.3. Let R and S be G-graded rings. Let (FR, dR)h and (FS , dS)h be generalized homogeneous
derivations on R and S, respectively. A graded homomorphism ϕ : R→ S is called a ghd-homomorphism
if it satisfies the compatibility conditions ϕ ◦ FR = FS ◦ ϕ and ϕ ◦ dR = dS ◦ ϕ. These conditions ensure
that the following diagrams commute:

R
FR−→ R

↓ ϕ ↓ ϕ
S

FS−→ S

and
R

dR−→ R
↓ ϕ ↓ ϕ
S

dS−→ S

Example 2.2. For graded rings (R,G1) and (S,G2) with generalized homogeneous derivations (FR, dR)h
and (FS , dS)h, the canonical projections πR : R × S → R and πS : R × S → S are ghd-homomorphisms
with respect to (F, d)h defined by F (r, s) = (FR(r), FS(s)) and d(r, s) = (dR(r), dS(s)).

Definition 2.4. The category G h
G has

(i) Objects: triples (R,F, d) where R is G-graded and (F, d)h is a generalized homogeneous derivation.
(ii) Morphisms: ghd-homomorphisms between the underlying rings.

Proposition 2.7. G h
G admits finite products.

Proof. Let {(Ri, Fi, di)}i∈I be a finite family of objects in G h
G. By Proposition 2.4, we know that

R =
∏
i∈I Ri can be equipped with a generalized homogeneous derivation (F, d)h where F ((ri)i∈I) =

(Fi(ri))i∈I and d((ri)i∈I) = (di(ri))i∈I , making (R,F, d) an object in G h
G. To verify the universal prop-

erty of products, let (T, FT , dT ) be an arbitrary object in G h
G and let {ϕi : T → Ri}i∈I be a family of

morphisms in G h
G. We must demonstrate the existence and uniqueness of a morphism ϕ : T → R such

that πi ◦ ϕ = ϕi for each i ∈ I, where πi : R→ Ri denotes the canonical projection. Define ϕ : T → R by
ϕ(t) = (ϕi(t))i∈I for all t ∈ T . By construction, πi ◦ϕ = ϕi for each i ∈ I. To verify that ϕ is a morphism
in G h

G, we confirm its compatibility with the generalized homogeneous derivations: For any t ∈ T

ϕ(FT (t)) = (ϕi(FT (t)))i∈I

= (Fi(ϕi(t)))i∈I

= F ((ϕi(t))i∈I)

= F (ϕ(t)).

Similarly, for the derivation component

ϕ(dT (t)) = (ϕi(dT (t)))i∈I

= (di(ϕi(t)))i∈I

= d((ϕi(t))i∈I)

= d(ϕ(t)).
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The uniqueness of ϕ follows directly from the universal property of the categorical product. Indeed, if
ψ : T → R is another morphism in G h

G such that πi ◦ ψ = ϕi for each i ∈ I, then for any t ∈ T

ψ(t) = (πi(ψ(t)))i∈I = (ϕi(t))i∈I = ϕ(t).

Hence, ψ = ϕ. □

3. gr-Generalized derivations

The set DerghG (R) does not have a natural algebraic structure, since the sum of two generalized homo-
geneous derivations may fail to preserve homogeneity (Remark 2.1). This issue comes from the tension
between the generalized derivation rule and the requirements of graded homogeneity. To overcome this, we
restrict our attention to generalized homogeneous derivations that preserve the degrees of homogeneous
elements.

Definition 3.1. Let R be a ring graded by an arbitrary group G. A generalized homogeneous derivation
(F, d)h is called a gr-generalized derivation if

F (Rτ ) ⊆ Rτ and d(Rτ ) ⊆ Rτ for all τ ∈ G.

The set of all such derivations is denoted by pDerghG (R).

Example 3.1. Let R = C[t1, t2] be the polynomial ring with the standard Z-grading. Define F (f) =

d(f) = t1
∂f
∂t1

+ t2
∂f
∂t2

for all f ∈ R. Then (F, d)h is a gr-generalized derivation.

The hierarchy of notions considered in this paper is as follows:

gr-generalized derivation generalized homogeneous derivation

generalized derivation

homogeneous derivation derivation

Remark 3.1. Any gr-generalized derivation of R restricts to a generalized derivation on the identity
component Re.

Example 3.2. For R =M2(k) with Z2-grading where R0 = {diag(a, d) | a, d ∈ k} and R1 = {anti-diag(b, c) |
b, c ∈ k}, the map F = λ·idR with d = 0 extends any scalar multiplication on Re = k·I2 to a gr-generalized
derivation.

Conjecture 1. Every gr-generalized derivation Fe : Re → Re extends to a gr-generalized derivation on
R.

Proposition 3.1. pDerghG (R) forms a Z(R) ∩ Re-module under pointwise addition and scalar multipli-
cation (r · (F, d)h) = (rF, rd)h.

Proof. The set pDerghG (R) is an additive group under pointwise addition. For the Z(R) ∩ Re-module
structure, define scalar multiplication by r ·(F, d)h = (rF, rd)h for r ∈ Z(R)∩Re and (F, d)h ∈ pDerghG (R).
It is clear that (rF, rd)h ∈ pDerghG (R), since the gr-generalized derivation property follows from the
centrality of r. For degree preservation, if x ∈ Rτ , then F (x), d(x) ∈ Rτ . As r ∈ Re, we have (rF )(x) =
r(F (x)) ∈ ReRτ = Rτ , and similarly (rd)(x) ∈ Rτ . □

Proposition 3.2. pDerghG (R) admits a Lie algebra structure over Z(R) ∩Re with bracket

[(F1, d1)h, (F2, d2)h] = (F1 ◦ F2 − F2 ◦ F1, d1 ◦ d2 − d2 ◦ d1)h.

Proof. Well-definedness and the Lie algebra axioms follow from standard commutator properties together
with degree preservation for both Fi and di. □

https://orcid.org/0009-0002-2245-4217
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Theorem 3.1. For gr-prime rings R, there exists a canonical decomposition

pDerghG (R) = pDerhG(R)⊕ CG(R),

where CG(R) = {F ∈ pDerghG (R) | F has zero associated derivation}.

Proof. For any (F, d)h ∈ pDerghG (R), write F = d+(F −d) and set F1 = d and F2 = F −d. Clearly, F1 ∈
pDerhG(R) by definition. A straightforward calculation shows that F2 ∈ CG(R), since F2(xy) = F2(x)y
for all x, y ∈ R, and F2 inherits degree preservation from F and d. To see that this decomposition is
direct, it suffices to show that pDerhG(R) ∩ CG(R) = {0}.

Let H ∈ DerhG(R)∩CG(R). The derivation property gives H(xy) = H(x)y+xH(y), while the condition
H ∈ CG(R) implies H(xy) = H(x)y. Hence xH(y) = 0 for all x, y ∈ R. Thus xRH(y) = {0} for all
x, y ∈ R. For any r ∈ H(R) \ {0}, we obtain rRH(y) = {0}. By [1, Proposition 2.1], it follows that
H(y) = 0 for all y ∈ R. Therefore H ≡ 0. □

Proposition 3.3. For a gr-domain R with R[t] graded by deg(t) = e, there exists a natural injection

pDerghG (R) ↪→ pDerghG (R[t])

given by (F, d)h 7→ (F ′, d′)h, where F ′(
∑
rit

i) =
∑
F (ri)t

i and d′(
∑
rit

i) =
∑
d(ri)t

i.

Proof. Let (F, d)h ∈ pDerghG (R) and define F ′, d′ : R[t] → R[t] by

F ′

(
n∑
i=0

rit
i

)
=

n∑
i=0

F (ri)t
i, d′

(
n∑
i=0

rit
i

)
=

n∑
i=0

d(ri)t
i.

That (F ′, d′)h ∈ pDerghG (R[t]) follows from direct computations. For homogeneity, observe that if f(t) =∑n
i=0 rit

i ∈ R[t]τ , then ri ∈ Rτ , so F (ri), d(ri) ∈ Rτ by the homogeneity of (F, d)h. Thus F ′(f), d′(f) ∈
R[t]τ . For injectivity, if (F, d)h ̸= (0, 0)h, then there exists r ∈ R such that either F (r) ̸= 0 or d(r) ̸= 0,
which implies F ′(r) ̸= 0 or d′(r) ̸= 0 when r is viewed as a constant polynomial. □

The injection in Proposition 3.3 is in general not surjective. For instance, take R = C with the trivial
grading and endow R[t] with the standard Z-grading. Define a derivation d : R[t] → R[t] by

d
(∑

i

ait
i
)
=
∑
i

i ait
i,

so that d(t) = t ̸= 0 and d is homogeneous of degree 0. Then (d, d)h ∈ pDerghZ (R[t]), but (d, d)h cannot
belong to the image of the above injection, since any element in the image satisfies d′(t) = 0.

Proposition 3.4. For G-graded k-algebras R,S with (FR, dR)h ∈ pDerghG (R) and (FS , dS)h ∈ pDerghG (S),
define

FR⊗S(r ⊗ s) = FR(r)⊗ s+ r ⊗ FS(s), dR⊗S(r ⊗ s) = dR(r)⊗ s+ r ⊗ dS(s).

Then (FR⊗S , dR⊗S)h ∈ pDerghG (R⊗k S).

Proof. We extend the definition of FR⊗S and dR⊗S to all of R ⊗k S by linearity. To verify that
(FR⊗S , dR⊗S)h is a generalized homogeneous derivation, we must verify that

FR⊗S(uv) = FR⊗S(u)v + udR⊗S(v), dR⊗S(uv) = dR⊗S(r1r2 ⊗ s1s2)

for all u, v ∈ R⊗K S. By linearity, it suffices to check this identity for homogeneous tensors u = r1 ⊗ s1
and v = r2 ⊗ s2. We have

FR⊗S((r1 ⊗ s1)(r2 ⊗ s2)) = FR⊗S(r1r2 ⊗ s1s2)

= FR(r1r2)⊗ s1s2 + r1r2 ⊗ FS(s1s2)

= (FR(r1)r2 + r1dR(r2))⊗ s1s2 + r1r2 ⊗ (FS(s1)s2 + s1dS(s2))

= FR(r1)r2 ⊗ s1s2 + r1dR(r2)⊗ s1s2 + r1r2 ⊗ FS(s1)s2 + r1r2 ⊗ s1dS(s2)

= [FR(r1)⊗ s1) + r1 ⊗ FS(s1)](r2 ⊗ s2) + (r1 ⊗ s1)[dR(r2)⊗ s2 + r2 ⊗ dS(s2)]

= FR⊗S(r1 ⊗ s1)(r2 ⊗ s2) + (r1 ⊗ s1)dR⊗S(r2 ⊗ s2)
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For the homogeneity condition, observe that if r ∈ Rτ and s ∈ Sσ, then r ⊗ s ∈ (R ⊗K S)τσ. Since
FR(r) ∈ Rτ and FS(s) ∈ Sσ, we have FR⊗S(r⊗s) = FR(r)⊗s+r⊗FS(s) ∈ (R⊗K S)τσ Additionally, we
must verify that dR⊗S satisfies the Leibniz rule for a homogeneous derivation. For homogeneous tensors
u = r1 ⊗ s1 and v = r2 ⊗ s2

dR⊗S(uv) = dR⊗S(r1r2 ⊗ s1s2)

= (dR(r1)r2 + r1dR(r2))⊗ s1s2 + r1r2 ⊗ (dS(s1)s2 + s1dS(s2))

= dR(r1)r2 ⊗ s1s2 + r1dR(r2)⊗ s1s2 + r1r2 ⊗ dS(s1)s2 + r1r2 ⊗ s1dS(s2)

= dR(r1)⊗ s1(r2 ⊗ s2) + r1 ⊗ dS(s1)(r2 ⊗ s2)

= dR⊗S(r1 ⊗ s1)(r2 ⊗ s2) + (r1 ⊗ s1)dR⊗S(r2 ⊗ s2)

Moreover, dR⊗S(r ⊗ s) ∈ (R⊗K S)τσ. Hence, (FR⊗S , dR⊗S)h ∈ pDerghG (R⊗K S). □

4. Some commutativity criteria on gr-prime rings

4.1. Results on homogeneous derivations.

Proposition 4.1. Let R be a gr-prime ring and I a nonzero graded ideal of R such that

[x, y] ∈ Z(R) or x ◦ y ∈ Z(R)

for all x, y ∈ I. Then R is a commutative graded ring.

To prove this proposition we need the following lemma.

Lemma 4.1. Let R be a gr-prime ring. Then the following assertions hold.
(1) If I is a nonzero graded ideal of R and aIb = {0} where a ∈ H(R) or b ∈ H(R), then a = 0 or

b = 0.
(2) If d is a homogeneous derivation of R and ad(x) = 0 or d(x)a = 0 for all x ∈ R, then either

a = 0 or d = 0.

Proof. (1) Let a =
∑
g∈G aτ ∈ R and b ∈ H(R) \ {0} such that aIb = {0}. Then, for all r ∈

I∩H(R) we have arb = 0, which implies
∑
τ∈G aτrb = 0. Since every element of R has a unique

homogeneous decomposition, it follows that aτrb = 0 for all r ∈ I ∩ H(R) and all τ ∈ G. Hence
aτIRb = {0} for all τ ∈ G. By [1, Proposition 2.1], we obtain aτI = {0} for all τ ∈ G, i.e.
aτRI = {0} for all τ ∈ G. Thus aτ = 0 for all τ ∈ G, and therefore a = 0.

(2) Suppose that ad(x) = 0 and a ̸= 0. Replacing x by xy, we obtain axd(y) = 0 for all x, y ∈ R. In
particular, aRd(x) = {0} for all x ∈ R. Hence aRd(r) = {0} for all r ∈ H(R). By [1, Proposition
2.1], we conclude that d(r) = 0 for all r ∈ H(R), and thus d = 0.

□

Proof of Proposition 4.1. Assume first that [x, y] ∈ Z(R) for all x, y ∈ I. Then

[z, [x, y]] = 0 (1)

for all x, y ∈ I and z ∈ R. Replacing y by yx in (1) and simplifying, we obtain

[x, y][z, x] = 0 (2)

for all x, y ∈ I and z ∈ R. Substituting zy for z in (2) yields

[x, y]z[x, y] = 0

for all x, y ∈ I and z ∈ R, which implies

[x, y]R[x, y] = {0}
for all x, y ∈ I. Since I is a graded ideal, we also have

[r1, r2]R[r1, r2] = {0}
for all r1, r2 ∈ I∩H(R). By gr-primeness of R, it follows that [r1, r2] = 0 for all r1, r2 ∈ I∩H(R). Hence
[x, y] = 0 for all x, y ∈ I, so I is commutative. In view of [1, Proposition 2.1], R is then commutative.

https://orcid.org/0009-0002-2245-4217
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Now assume that x ◦ y ∈ Z(R) for all x, y ∈ I. Then

[x ◦ y, z] = 0 (3)

for all x, y ∈ I and z ∈ R. Replacing y by yx in (3) and simplifying, we obtain

(x ◦ y)[x, z] = 0 (4)

for all x, y ∈ I and z ∈ R. Substituting sz for z in (4), we get

(x ◦ y)s[x, z] = 0

for all x, y ∈ I and s, z ∈ R. Hence
(x ◦ y)R[x, z] = {0}

for all x, y ∈ I and z ∈ R. In particular,

(r1 ◦ r2)R[r1, z] = {0}
for all r1, r2 ∈ I ∩H(R) and z ∈ R. According to [1, Proposition 2.1], it follows that

r1 ◦ r2 = 0 or [r1, z] = 0

for all r1, r2 ∈ I ∩H(R) and z ∈ R. Thus

x ◦ y = 0 or [x, z] = 0

for all x, y ∈ I and z ∈ R. In the latter case, I is a central graded ideal, and applying [1, Proposition
2.1], we conclude that R is commutative.

We may therefore assume that x ◦ y = 0 for all x, y ∈ I. Replacing y by yz gives

y[x, z] = 0

for all x, y ∈ I and z ∈ R. Since I is a nonzero ideal of R, there exists a ∈ I \ {0} such that

a[x, z] = 0

for all x ∈ I and z ∈ R. Fix r ∈ I ∩ H(R) and let dr be the inner homogeneous derivation associated
with r, i.e. dr(z) = [r, z] for z ∈ R. Then

adr(z) = 0

for all z ∈ R. By Lemma 4.1(2), we obtain dr(z) = [r, z] = 0 for all z ∈ R. Hence [x, z] = 0 for all x ∈ I
and z ∈ R. In both cases, we find that I is a central graded ideal of R. Therefore, R is commutative. □

The next result characterizes when compositions of homogeneous derivations force commutativity.

Theorem 4.1. Let R be a gr-prime ring of characteristic different from 2. Suppose d1 and d2 are nonzero
homogeneous derivations of R such that

d1d2(x) ∈ Z(R)

for all x ∈ R. Then R is a commutative graded ring.

Proof. By hypothesis,
d1d2(x) ∈ Z(R) (5)

for all x ∈ R. Replacing x by [x, y] in (5) and expanding, we obtain

[d2(x), d1(y)] + [d1(x), d2(y)] ∈ Z(R) (6)

for all x, y ∈ R. Putting y = d2(z) in (6) yields

[d1(x), d
2
2(z)] ∈ Z(R)

for all x, z ∈ R. In particular,
[d22(r), d1(y)] ∈ Z(R)

for all r ∈ H(R) and y ∈ R. By [1, Lemma 2.2], it follows that either d22(r) ∈ Z(R) for all r ∈ H(R) or
d1 = 0. The latter is impossible by assumption, so d22(x) ∈ Z(R) for all x ∈ R. Taking [x, z] instead of
x, we obtain

2[d2(x), d2(z)] ∈ Z(R)
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for all x, z ∈ R. Since charR ̸= 2, it follows that

[d2(x), d2(z)] ∈ Z(R)

for all x, z ∈ R. By [1, Theorem 3.5], we conclude that R is commutative. □

The following example proves that the gr-primeness hypothesis in Theorem 4.1 is not superfluous. In
particular, our theorem cannot be extended to gr-semiprime rings.

Example 4.1. Consider the ring R = C[t1, t2, t3, t4] ×M2(C) with Z× Z4-grading. R is gr-semiprime.
We define homogeneous derivations d1, d2 : R→ R by

d1 (f,M) =
(
t2t4

∂f
∂t1
, 0
)
, d2 (f,M) =

(
t1t3

∂f
∂t2
, 0
)
.

We have d1d2(x) ∈ Z(R) for all x ∈ R, thus satisfying the condition of Theorem 4.1. Nevertheless, R is
noncommutative.

4.2. Results on generalized homogeneous derivations. In this subsection, we extend classical commuta-
tivity theorems from prime ring theory to the graded setting, giving necessary and sufficient conditions
under which generalized homogeneous derivations force gr-prime rings to be commutative.

Proposition 4.2. Let R be a gr-prime ring and (F, d)h a generalized homogeneous derivation of R. If
d ̸= 0, then F ̸= 0.

Proof. Assume F = 0. For any elements x, y ∈ R, we have F (xy) = 0. Since

F (xy) = F (x)y + xd(y),

it follows that xd(y) = 0 for all x, y ∈ R. Hence xRd(y) = {0} for all x, y ∈ R. In particular, for some
nonzero homogeneous element r ∈ H(R) \ {0}, we have rRd(y) = {0} for all y ∈ R. According to [1,
Proposition 2.1], this implies d(y) = 0 for all y ∈ R. Thus d = 0, which contradicts the assumption. □

In [2], it was shown that a prime ring R with a nonzero ideal I is commutative if it admits a generalized
derivation F satisfying

F (xy)± xy ∈ Z(R) or F (x)F (y)± xy ∈ Z(R)

for all x, y ∈ I. We now extend this result to gr-prime rings in the context of generalized homogeneous
derivations.

Theorem 4.2. Let R be a gr-prime ring and I a nonzero graded ideal of R. If R admits a generalized
homogeneous derivation F with associated nonzero homogeneous derivation d such that

F (xy)± xy ∈ Z(R)

for all x, y ∈ I, then R is commutative.

Proof. Consider the case
F (xy)− xy ∈ Z(R)

for all x, y ∈ I. Using the same reasoning as in the proof of [2, Theorem 2.1], we obtain the identity

[z, z1]xyd(z) = 0

for all x, y, z, z1 ∈ I, which yields [z, z1]xRId(z) = {0} for all x, z, z1 ∈ I. Since I is a graded ideal of R,
we have

[r′, z1]xRrd(r
′) = {0}

for all x, z1 ∈ I and r, r′ ∈ I ∩ H(R). According to [1, Proposition 2.1], either [z1, r
′]x = 0 or rd(r′) = 0

for all x, z1 ∈ I and r, r′ ∈ I ∩H(R). This implies that

[z, z1]I = {0} or Id(z) = {0}
for all z, z1 ∈ I. Define

I1 = {z ∈ I | [z, z1]I = {0} for all z1 ∈ I} , I2 = {z ∈ I | Id(z) = {0}} .
Then I1 and I2 are additive subgroups of I with I = I1 ∪ I2. Since a group cannot be expressed as the
union of two proper subgroups, either I1 = I or I2 = I. We consider these cases separately.

https://orcid.org/0009-0002-2245-4217
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Case 1: If [z1, z]I = {0} for all z, z1 ∈ I, then, since I is an ideal, we obtain [z1, z]RI = {0} for all
z, z1 ∈ I. As I is a nonzero graded ideal, there exists r ∈ I ∩H(R) \ {0} such that

[z, z1]Rr = {0}

for all z, z1 ∈ I. By [1, Proposition 2.1], it follows that [z, z1] = 0 for all z, z1 ∈ I. Hence I is commutative.
Therefore, R is commutative.
Case 2: If Id(z) = {0} for all z ∈ I, then IRd(z) = {0} for all z ∈ I. In particular, rRd(z) = {0} for
some r ∈ I∩H(R) \ {0} and all z ∈ I. Using [1, Proposition 2.1], we obtain d(z) = 0 for all z ∈ I. Hence
d vanishes on I. By [1, Lemma 2.6], d is zero on R, which is a contradiction.

For the second case F (xy) + xy ∈ Z(R) for all x, y ∈ I, the argument reduces to the first case by
considering −F instead of F . □

Next, we extend [2, Theorem 2.5] to gr-prime rings by considering a pair of generalized homogeneous
derivations F1 and F2 satisfying

F1(x)F2(y)± xy ∈ Z(R)

for all x, y in a graded ideal I of R.

Theorem 4.3. Let R be a gr-prime ring and I a nonzero graded ideal of R. If R admits two gener-
alized homogeneous derivations F1 and F2 with associated nonzero homogeneous derivations d1 and d2,
respectively, such that

F1(x)F2(y)± xy ∈ Z(R)

for all x, y ∈ I, then R is commutative.

Proof. Consider the case
F1(x)F2(y)− xy ∈ Z(R) (7)

for all x, y ∈ I. Substituting yz for y in (7), we obtain(
F1(x)F2(y)− xy

)
z + F1(x)yd2(z) ∈ Z(R) (8)

for all x, y ∈ I and z ∈ R. Taking the commutator of (8) with z, we obtain

F1(x)[yd2(z), z] + [F1(x), z]yd2(z) = 0 (9)

for all x, y ∈ I et z ∈ R. Substituting F1(x)y for y in (9), we arrive at

[F1(x), z]F1(x)yd2(z) = 0 (10)

for all x, y ∈ I and z ∈ R. This implies [F1(x), z]F1(x)RId2(z) = {0} for all x ∈ I et z ∈ R. In particular,

[F1(r), r
′]F1(r)RId2(r

′) = {0}

for all r ∈ I ∩H(R) and r′ ∈ H(R). According to [1, Proposition 2.1], either

[F1(r), r
′]F1(r) = 0 or Id2(r

′) = {0}

for all r ∈ I ∩ H(R) and r′ ∈ H(R). Thus, [F1(x), z]F1(x) = 0 or Id2(z) = {0} for all x ∈ I and z ∈ R.
Let

J1 = {z ∈ R | [F1(x), z]F1(x) = 0 for all x ∈ I}, J2 = {z ∈ R | Id2(z) = {0}}.
Clearly, J1 and J2 are additive subgroups of R whose union is R. Since a group cannot be the union of
two proper subgroups, either J1 = R or J2 = R.

If J2 = R, then Id2(z) = {0} for all z ∈ R. Since I is an ideal, IRd2(z) = {0} for all z ∈ R. In
particular, rRd2(z) = {0} for all z ∈ R and some r ∈ I ∩ H(R) \ {0}. According to [1, Proposition 2.1],
we conclude that d2(z) = 0 for all z ∈ R. Hence d2 = 0, which contradicts our assumption. Therefore,
[F1(x), z]F1(x) = 0 for all x ∈ I and z ∈ R. Replacing z by zz′, we obtain [F1(x), z]z

′F1(x) = 0 for all
x ∈ I and z, z′ ∈ R, which implies [F1(x), z]RF1(x) = {0} pour tous x ∈ I et z ∈ R. In particular,

[F1(r), z]RF1(r) = {0}
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for all r ∈ I ∩ H(R) and z ∈ R. Invoking [1, Proposition 2.1], we conclude that either F1(r) = 0 or
[F1(r), z] = 0 for all z ∈ R. Hence F1(x) = 0 or [F1(x), z] = 0 for all x ∈ I and z ∈ R. In both cases, we
obtain [F1(x), z] = 0 for all x ∈ I and z ∈ R. Replacing x by xz, we obtain

x[d1(z), z] + [x, z]d1(z) = 0 (11)

for all x ∈ I and z ∈ R. Substituting sx for x in (11), we arrive at [s, z]xd1(z) = 0 for all x ∈ I and
s, z ∈ R, which implies [s, z]RId1(z) = {0} for all s, z ∈ R. Using similar arguments as above, either
[s, z] = 0 or d1(z) = 0 for all s, z ∈ R. Since d1 ̸= 0, we must have [s, z] = 0 for all s, z ∈ R. Therefore,
R is commutative.

For the second case F1(x)F2(y) + xy ∈ Z(R) for all x, y ∈ I, the argument reduces to the first case by
considering −F1 instead of F1. □

The following example shows that the gr-primeness hypothesis cannot be omitted from the above
theorems.

Example 4.2. Let R = C[t1, t2, t3] ×
{(

a b
0 0

) ∣∣∣ a, b ∈ C
}

with Z × Z2-grading. Then R is not gr-

prime. Let I = C[t1, t2, t3]×
{(

0 a
0 0

) ∣∣∣ a ∈ C
}
. Clearly, I is a nonzero graded ideal of R. Consider

the mappings:

F1 : R → R

(f,M) 7→
(
t3
(
f + ∂f

∂t3

)
, 0
) , F2 = d2 : R → R

(f,M) 7→
(
t1
∂f
∂t2
, 0
) ,

and
d1 : R → R

(f,M) 7−→
(
t2t3

∂f
∂t3
, 0
)
.

Then (F1, d1)h and (F2, d2)h are generalized homogeneous derivations on R. Moreover, F1(xy) ± xy ∈
Z(R) and F1(x)F2(y)± xy ∈ Z(R) for all x, y ∈ I. However, R is noncommutative.

5. Existence Conditions for Central Graded Ideals in Gr-Semiprime Rings

In this section, we investigate the behavior of graded ideals under generalized homogeneous derivations,
and we characterize when such rings necessarily contain nonzero central graded ideals.

In [3], it was shown that if a ring R admits generalized derivations F1 and F2 with associated nonzero
derivations d1 and d2, respectively, such that

F1(x)x± xF2(x) = 0

for all x ∈ I, where I is a nonzero ideal of R, then R contains a nonzero central ideal. We extend this
result to the graded case by studying generalized homogeneous derivations F1 and F2 satisfying

F1(x)y ± xF2(y) ∈ Z(R)

for all x, y ∈ I, where I is a graded ideal of a gr-semiprime ring R.

Theorem 5.1. Let R be a gr-semiprime ring and I a nonzero graded ideal of R. Suppose that R
admits generalized homogeneous derivations F1 and F2 with associated homogeneous derivations d1 and
d2, respectively, with d2(I) ̸= {0}. If

F1(x)y ± xF2(y) ∈ Z(R)

for all x, y ∈ I, then R contains a nonzero central graded ideal.

Proof. We begin with the case
F1(x)y − xF2(y) ∈ Z(R) (12)

for all x, y ∈ I. Substituting yz for y in (12), we obtain(
F1(x)y − xF2(y)

)
z − xyd2(z) ∈ Z(R) (13)

for all x, y, z ∈ I. Taking the commutator of (13) with z yields

xy[d2(z), z] + x[y, z]d2(z) + [x, z]yd2(z) = 0 (14)

https://orcid.org/0009-0002-2245-4217
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for all x, y, z ∈ I. Substituting d2(z)x for x in (14), we obtain

[d2(z), z]xyd2(z) = 0 (15)

for all x, y, z ∈ I. Substituting d2(z)y for y in (15), we obtain

[d2(z), z]xd2(z)yd2(z) = 0 (16)

for all x, y, z ∈ I. By subtracting (16) from (15) and using the previous identities, we get

[d2(z), z]x[d2(z), z]y[d2(z), z] = 0

for all x, y, z ∈ I. This implies

[d2(z), z]I[d2(z), z]I[d2(z), z] = {0}
for all z ∈ I. Since R is gr-semiprime, there exists a family F := {Pi | i ∈ Λ} of gr-prime ideals such that⋂
i∈Λ Pi = {0}. Therefore,

[d2(z), z]I[d2(z), z]I[d2(z), z] ⊆ Pi

for all i ∈ Λ and all z ∈ I. By [1, Proposition 2.1], and since I is a graded ideal, we have [d2(z), z] ∈ Pi
for all i ∈ Λ and z ∈ I. Hence [d2(z), z] = 0 for all z ∈ I. Thus, by [1, Theorem 4.1], R contains a
nonzero central graded ideal.

For the second case
F1(x)y + xF2(y) ∈ Z(R)

for all x, y ∈ I, the argument reduces to the first case by considering −F2 instead of F2. □

From Theorem 5.1 and [1, Proposition 2.1], we obtain the following corollary.

Corollary 5.1. Let R be a gr-prime ring and I a nonzero graded ideal of R. Suppose that R admits
generalized homogeneous derivations F1 and F2 with associated nonzero homogeneous derivations d1 and
d2, respectively, satisfying

F1(x)y ± xF2(y) ∈ Z(R)

for all x, y ∈ I. Then R is commutative.

Using similar arguments with appropriate modifications, and considering the cases F1 = F2 or F1 =
−F2 in Theorem 5.1, we obtain the following result. This extends the graded version of Posner’s Sec-
ond Theorem [1, Theorem 3.3] to generalized homogeneous derivations on gr-prime rings, providing a
characterization of commutativity.

Corollary 5.2. Let R be a gr-prime ring and I a nonzero graded ideal of R. Suppose that R admits a
generalized homogeneous derivation F with associated homogeneous derivation d such that

[F (x), x] ∈ Z(R)

for all x ∈ I. Then R is commutative.

Corollary 5.3. Let R be a gr-prime ring and I a nonzero graded ideal of R. Suppose that R admits a
generalized homogeneous derivation F with associated nonzero homogeneous derivation d such that

F (x) ◦ x ∈ Z(R)

for all x ∈ I. Then R is commutative.

The following example shows that the gr-semiprimeness assumption in Theorem 5.1 cannot be omitted.

Example 5.1. Let

R =

{(
a b
0 0

) ∣∣∣ a, b ∈ R
}

be a Z2-graded ring. Clearly, R is not gr-semiprime. Define generalized homogeneous derivations (F1, d1)h
and (F2, d2)h on R by

F1 : R −→ R(
a b
0 0

)
7−→

(
a 2b
0 0

)
and

F2 : R −→ R(
a b
0 0

)
7−→

(
0 a+ 2b
0 0

)
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and

d1

(
a b
0 0

)
=

(
0 b
0 0

)
, d2 = F2.

Let

I =

{(
0 a
0 0

) ∣∣∣ a ∈ R
}

be a graded ideal of R. Even though F1 and F2 satisfy the conditions of Theorem 5.1, the ring R has no
nonzero central graded ideal.

6. Generalized Homogeneous Derivations on Graded Modules

In this section, we systematically extend the theory to graded modules by introducing generalized
homogeneous derivations on modules, establishing their functorial properties, and constructing the asso-
ciated categorical framework.

Definition 6.1. Let R be a G-graded ring and M a G-graded R-module. An additive mapping FM :
M → M is a generalized homogeneous derivation if there exists a homogeneous derivation d : R → R
such that

(i) FM (rm) = d(r)m+ rFM (m) for all r ∈ R, m ∈M ;
(ii) FM (m) ∈ H(M) for all m ∈ H(M).

We denote such pairs by (FM , d)h,M and let DerghG (R,M) denote the set of all generalized homogeneous
derivations on M .

Example 6.1. Let R = C[t1, t2] with the standard Z-grading, and let M = R2 with grading Mn =
{(f1, f2) | fi ∈ Rn}. Define

F (f1, f2) =

(
∂f1
∂t1

,
∂f2
∂t1

)
with associated derivation d(f) = ∂f

∂t1
. Then (F, d)h,M ∈ DerghG (R,M).

Definition 6.2. A graded submodule N ⊆M is gr-differential with respect to (FM , d)h,M if FM (N) ⊆ N .

Example 6.2. Consider the generalized homogeneous derivation (FM , d)h,M from Example 6.1. Then
the graded submodule N = {0} ⊕R ⊆M is gr-differential with respect to (FM , d)h,M .

Definition 6.3. A generalized homogeneous derivation (FM , d)h,M is gr-generalized if FM (Mτ ) ⊆ Mτ

and d(Rτ ) ⊆ Rτ for all τ ∈ G.

The set of gr-generalized derivations on M is denoted pDerghG (R,M).

Proposition 6.1. pDerghG (R,M) forms a Z(R)∩Re-module under pointwise operations and scalar mul-
tiplication a · (FM , d)h,M = (aFM , ad)h,M for a ∈ Z(R) ∩Re.

Proof. Centrality of scalars ensures

(aFM )(rm) = aFM (rm) = a(d(r)m+ rFM (m)) = (ad)(r)m+ r(aFM )(m),

while degree preservation follows from a ∈ Re and the grading properties of FM and d. □

Proposition 6.2. For finite families {Mi}i∈I of graded R-modules:

(1) If (FMi
, d)h,Mi

∈ pDerghG (R,Mi) share the same associated derivation d, then

F⊕
Mi

((mi)i) = (FMi
(mi))i

defines a canonical gr-generalized derivation on
⊕

i∈IMi.
(2) If (FM , d)h,M , (FN , d)h,N ∈ pDerghG (R,M), pDerghG (R,N) have the same associated derivation d,

then
FM⊗N (m⊗ n) = FM (m)⊗ n+m⊗ FN (n)

defines a canonical gr-generalized derivation on M ⊗R N .

https://orcid.org/0009-0002-2245-4217
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Proof. (1) For the direct sum, let (mi)i∈I ∈
⊕

i∈IMi and r ∈ R. Then

F⊕
Mi

(r(mi)i∈I) = (FMi(rmi))i∈I = (d(r)mi + rFMi(mi))i∈I = d(r)(mi)i∈I + rF⊕
Mi

((mi)i∈I).

For degree preservation, let (mi)i∈I be homogeneous of degree τ ∈ G in the direct sum. Then each
nonzero mi is homogeneous of degree τ , and since each FMi preserves degrees, FMi(mi) is either zero
or homogeneous of degree τ . Hence (FMi(mi))i∈I is homogeneous of degree τ , so F⊕

Mi
preserves the

grading.
(2) For r ∈ R, m ∈Mτ , and n ∈ Nσ, we have

FM⊗N (r(m⊗ n)) = FM⊗N (rm⊗ n)

= FM (rm)⊗ n+ rm⊗ FN (n)

= (d(r)m+ rFM (m))⊗ n+ rm⊗ FN (n)

= d(r)m⊗ n+ rFM (m)⊗ n+ rm⊗ FN (n)

= d(r)(m⊗ n) + r(FM (m)⊗ n+m⊗ FN (n))

= d(r)(m⊗ n) + rFM⊗N (m⊗ n).

For degree preservation, if m ∈ Mτ and n ∈ Nσ, then m ⊗ n ∈ (M ⊗R N)τσ. Since FM (m) ∈ Mτ et
FN (n) ∈ Nσ, we have

FM⊗N (m⊗ n) = FM (m)⊗ n+m⊗ FN (n) ∈ (M ⊗R N)τσ.

Thus FM⊗N preserves the grading. □

Definition 6.4. A graded R-module homomorphism ϕ :M → N is a gr-generalized homomorphism if

ϕ ◦ FM = FN ◦ ϕ

for (FM , d)h,M ∈ pDerghG (R,M) and (FN , d)h,N ∈ pDerghG (R,N).

Example 6.3. Let {Mi}i∈I be a finite family of graded R-modules with direct sum M =
⊕

i∈IMi. If each
Mi admits a gr-generalized derivation (FMi

, d)h,Mi
∈ pDerghG (R,Mi) with the same associated derivation

d, then the canonical projection maps πj : M → Mj are gr-generalized homomorphisms with respect to
the gr-generalized derivations (FM , d)h,M on M and (FMj

, d)h,Mj
on Mj.

Proposition 6.3. Let ϕ : M → N be a surjective graded R-module homomorphism between G-graded
modules such that ker(ϕ) is a gr-differential submodule of M . Then there exists a well-defined Z(R)∩Re-
linear map

ϕ∗ : pDerghG (R,M) → pDerghG (R,N)

such that for any (FM , d)h,M ∈ pDerghG (R,M) with FM (kerϕ) ⊆ kerϕ, the induced map is (FN , d)h,N =
ϕ∗((FM , d)h,M ).

Proof. Since ϕ is surjective, for each n ∈ N there exists m ∈M with ϕ(m) = n. Define FN : N → N by

FN (n) = ϕ(FM (m)),

where m is any preimage of n. To see that FN is well defined, suppose ϕ(m1) = ϕ(m2) = n. Then
m1 −m2 ∈ kerϕ, and by hypothesis

FM (m1 −m2) ∈ kerϕ.

Hence ϕ(FM (m1)) = ϕ(FM (m2)). For the gr-generalized derivation property, let r ∈ R and n ∈ N , and
choose m ∈M with ϕ(m) = n. Then

FN (rn) = FN (ϕ(rm))

= ϕ(FM (rm))

= ϕ(d(r)m+ rFM (m))

= d(r)ϕ(m) + rϕ(FM (m))

= d(r)n+ rFN (n).
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For homogeneity, if n ∈ Nτ , then, since ϕ is graded, we can choose m ∈ Mτ with ϕ(m) = n. As FM
preserves degrees, FM (m) ∈Mτ , and thus

FN (n) = ϕ(FM (m)) ∈ ϕ(Mτ ) ⊆ Nτ .

The Z(R)∩Re-linearity of ϕ∗ follows from the linearity of ϕ and the module structure on pDerghG (R,M).
□

Corollary 6.1. For graded isomorphisms ϕ :M → N , the induced map

ϕ∗ : pDerghG (R,M) → pDerghG (R,N)

is a Z(R) ∩Re-module isomorphism, with inverse

ψ∗((FN , d)h,N ) = (ϕ−1 ◦ FN ◦ ϕ, d)h,M .

Proof. The canonical projection π : M → M/N is surjective, and since FM (N) ⊆ N by hypothesis, we
have FM (kerπ) ⊆ kerπ. By Proposition 6.3, there exists a well-defined Z(R) ∩Re-linear map

π∗ : pDerghG (R,M) → pDerghG (R,M/N)

such that π∗((FM , d)h,M ) = (FM/N , d)h,M/N , where FM/N (π(m)) = π(FM (m)) for all m ∈ M . Well-
definedness of FM/N follows from FM (N) ⊆ N . The gr-generalized derivation property is checked by
verifying

FM/N (rm) = d(r)m+ rFM/N (m)

for all r ∈ R and m ∈ M/N . For homogeneity, if m ∈ (M/N)τ , write m = mτ + n with mτ ∈ Mτ and
n ∈ N . Since FM preserves degrees and FM (N) ⊆ N , we get

FM/N (m) = π(FM (mτ )) ∈ (M/N)τ .

The commutativity relation FM/N ◦ π = π ◦ FM makes π a gr-generalized homomorphism. Uniqueness
follows because any other gr-generalized derivation F ′

M/N satisfying F ′
M/N ◦ π = π ◦ FM must coincide

with FM/N on all cosets. □

Definition 6.5. The category M gh
G is defined as follows.

(i) Objects: Triples (R,M, (FM , d)h,M ) where R is G-graded, M is a graded R-module, and (FM , d)h,M ∈
pDerghG (R,M).

(ii) Morphisms: Pairs (ϕ, ψ) : (R,M, (FM , d)h,M ) → (S,N, (FN , e)h,N ) where ϕ : R → S is a graded
ring homomorphism, ψ :M → N is ϕ-semilinear, and the diagrams

M N

M N

ψ

FM FN

ψ

R S

R S

ϕ

d e

ϕ

commute.

Theorem 6.1. M gh
G is a well-defined category.

Proof. Composition is well defined : Let

(ϕ, ψ) : (R,M, (FM , d)h,M ) → (S,N, (FN , e)h,N )

and
(ϕ′, ψ′) : (S,N, (FN , e)h,N ) → (T, P, (FP , f)h,P )

be morphisms in M gh
G . We must show that (ϕ′ ◦ ϕ, ψ′ ◦ ψ) is again a morphism. First, ψ′ ◦ ψ is (ϕ′ ◦ ϕ)-

semilinear:

(ψ′ ◦ ψ)(rm) = ψ′(ψ(rm))

= ψ′(ϕ(r)ψ(m))

= ϕ′(ϕ(r))ψ′(ψ(m))

= (ϕ′ ◦ ϕ)(r)(ψ′ ◦ ψ)(m).

https://orcid.org/0009-0002-2245-4217


REFERENCES 17

Next, we check compatibility with the derivations and module maps:

(ψ′ ◦ ψ) ◦ FM = ψ′ ◦ (FN ◦ ψ) = FP ◦ (ψ′ ◦ ψ),
and similarly

(ϕ′ ◦ ϕ) ◦ d = f ◦ (ϕ′ ◦ ϕ).
Identity morphisms: For any object (R,M, (FM , d)h,M ), the pair (idR, idM ) satisfies

idM (rm) = rm = idR(r)idM (m), idM ◦ FM = FM = FM ◦ idM , idR ◦ d = d = d ◦ idR,

and is therefore a morphism in M gh
G .

Associativity and identity laws: These follow directly from the associativity and identity properties of
function composition. □
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